
AD-A252 125
I!1I111t II II !11iD Ii D TIC

SELECTE

v C

A Performance-Based MTR92BOO00051

Comparison of Object-Oriented April 1992

Simulation Tools

Edward H. Bensley
Victor T. Giddings
Jonathan I. Leivent
Ronald J. Watro

ThISMTBUtION STATE

---.-,------ 6--ffT.-~'- -- I
Approv- for publI" rolo ose;

i-Dstrlbutlon UrnIluilted

MITRE 92-16658
BefM ashst tsi i I ' F
9 zoIII Il I6I I I ll Ii1I
9Z 6 2 18

A Performance-Based MTR92BOO00051

Comparison of Object-Oriented April 1992

Simulation Tools

Edward H. Bensley
Victor T. Giddings
Jonathan I. Leivent
Ronald J. Watro

Contract Sponeor MSR
Contract No. N/A Aceaatoa For
Project No. 91330 NT Q I I4
Dept. D070 r S 0

Vlat:tz- O Liled 0
Approved for public relse; distibuton 5. t If .eat 1i-
unlimited. _

Iky~
i Ost rib~t in/

Avilabllity Code

Ava i and/or
Dist Special

Bedford, Msachust

Deportment Approval: _

Mure J. Br s

MITRE Project Approval: L _
Edward H. Bensley

If

ABSTRACT

This paper compares the performance and features of five different tools for object-oriented
simulation. Three of the tools (MODSIM II, SES/workbench, and Sim++) are commercial
products that are targeted exclusively at simulation work. Also examined are simulations in
Smalltalk-80 and our own, non-commercial C++ simulation library, called MOOSE (MITRE
Object-Oriented Simulation Executive). For each of the tools, we discuss the support for
simulation, the support for object-oriented design and the degree to which these areas are
effectively integrated. We report the results of performance testing of the tools using six
concise benchmarks, each devised to test a specific feature, and one larger simulation, devised
to compare general performance. Also included are partial results on ERIC, an object-oriented
simulation tool developed at Rome Laboratories.

iii

ACKNOWLEDGMENTS

This paper was presented at the 1992 Object-Oriented Simulation Conference, part of the
Society for Computer Simulation (SCS) Western Simulation Multiconference, held
20-22 January in Newport Beach, CA. A condensed version of the paper appears in the
conference proceedings [Bensley 92].

The Sim++ code for one of our benchmarks (the bank simulation) was written by Brett Cui
under support from the Software Engineering Core Project

The following trademarks are used throughout the remainder of the document:

* Butterfly is a trademark of BBN Advanced Computers, Inc.
* Computing Surface is a trademark of Meiko Scientific Corporation.
* Jade, Sim++, and TimeWarp are trademarks of Jade Simulations International

Corporation.
• MODSIM II and SIMGRAPHICS II are trademarks and service marks of CACI

Products Company.
* Sun-3 and Sun-4 are trademarks of Sun Microsystems, Inc.
" Smalltalk-80 and Objectworks are trademarks of ParcPlace Systems, Inc.
* SESlworkbench, SESIdesign and SESIsim are trademarks of Scientific and

Engineering Software, Inc.

iv

TABLE OF CONTENTS

SECTION PAGE

1 Introduction 1

2 Design Issues 3

Approaches to Modeling 3
Event Selection Strategy 3
World Views 4

Support for Object-Oriented Development 7
Integration of Objects and Simulation Time 7
Inheritance 9
Strong Types and Object-Orientation 9
Dynamic Creation of Simulation Objects 11

Simulation Constructs 12
Time Control 12
Preemption 12
Pre-Defimed Classes 12
Probability Distributions 13
Data Collection 13

Extensibility 13
Graphical Interfaces and Animation 13

3 Tools 15

MODSIM II 15
SES/workbench 16
Sim++ 17
Smalltalk-80 18
A Prototype C++ Simulation Library - MOOSE 18
ERIC 19

4 Benchmarks 21

Single Feature Benchmarks 21
Test 1 - Sorting Threads 21
Test 2 - Thread Creation 22
Test 3 - Synchronous Thread Creation 22
Test 4 - Resource Queues 23
Test 5 - Interrupts 23

Bank Simulation Benchmark 24

v

SECTION PAGE

5 Timing Results 27

Test 1 27
Test 2 27
Test 3 31
Test 4 31
Test 5 31
Bank Simulation 37

6 Summary and Concluding Remarks 39

List of References 41

Appendix A MODSIM II Code 43

Appendix B SESlworkbench Code 49

Appendix C Sim++ Code 53

Sim++ Bank Simulation Description 58
Sim++ Bank Simulation Code 63

Appendix D Smalltalk-80 Code 73

Appendix E MOOSE Code 77

Appendix F ERIC Code 83

Distribution List 85

vi

LIST OF FIGURES

FIGURE PAGE

1 Bank Simulation Sketch 25

2 Test 1 Performance 28

3 Test 2 Performance 29

4 Test 2 Performance (no Smalltalk-80 or ERIC) 30

5 Test 3a Performance 32

6 Test 3b Performance 33

7 Test 4 Performance 34

8 Test 4 Performance (Smalltalk-80, MODSIM II, and ERIC are omitted) 35

9 Test 5 Performance 36

10 Bank Simulation Performance 37

11 SESlworkbench Graphs 50

12 Major Entities and Event Flows 58

vii

SECTION 1

INTRODUCTION

This paper compares the performance and features of six different tools for object-oriented
simulation. Three of the tools (MODSIM 11, SESlworkbench, and Sim++) are commercial
products that are targeted at simulation work. We also examine simulations in Smalltalk-80,
ERIC, and our own, non-commercial C++ simulation library, called MOOSE (MITRE Object-
Oriented Simulation Executive). MOOSE is included to represent a simulation system coded
quickly (in less than two staff months) using a standard object-oriented programming language
without explicit simulation support. ERIC was a late addition to our study, at the request of its
developers at Rome Laboratories. We did not analyze the features provided by it, and two of
the benchmarks were not completed in it.

In this work, we focus exclusively on languages and tools that provide at least a minimum
amount of explicit support for object orientation. The advantages of object orientation as a
structuring methodology are, by now, well-known. However, the emphasis in object-oriented
systems on making decisions at run time can result in significant performance overhead. Our
survey attempts to evaluate performance of the systems in quantitative terms, and to
qualitatively assess the success of the merging of object orientation and simulation paradigms
in the systems.

We designed several concise benchmarks to compare performance of particular features, and
one larger simulation to compare general performance. In developing the benchmark code, we
noted significant differences between tools in three areas: the modeling approach encouraged
or required by the tools, the degree to which the features of object-oriented programming are
supported, and the interaction of the modeling considerations with the object-oriented features.

The simulation tools that we consider provide and support a variety of simulation constructs.
ERIC provides support for only event-driven simulation. Two of our benchmarks require a
notion of interrupt, which is best understood in the process-driven approach to simulation, and
these benchmarks were not coded in ERIC. For Smalltalk-80, we used a simulation executive
based on the one given in the Smalltalk "blue book" [Goldberg 83]. ParcPlace Systems, the
developer of Smalltalk-80, provides no explicit support for simulation. We also examined the
option of starting from an object-oriented programming language, and building a simulation
executive of our own. One of us (Leivent) designed and built the MOOSE C++ library for
simulation. The design and implementation of MOOSE were undertaken when preliminary
benchmarks on some of the commercial tools suggested that they could not handle large
simulation applications efficiently. The C++ language was chosen for MOOSE because it
provides a rich set of object-oriented constructs without incurring excessive performance
penalties. The MOOSE system provides the same basic simulation primitives as the
commercial tools, and was designed to have a programming interface somewhat resembling
that of MODSIM II.

w | 11

The remainder of this paper is organized into five sections and several appendices. Section 2
provides a discussion of issues in simulation methodology and object-oriented programming.
Section 3 contains short descriptions of the tools that we used. Section 4 describes the
benchmark simulations. Section 5 discusses the results of the performance testing. Section 6
provides a summary and concluding remarks. Finally, for each tool, the benchmark source
code has been included in an appendix.

2

SECTION 2

DESIGN ISSUES

Many of the differences between object-oriented simulation systems can be grouped into three
areas: the modeling approach encouraged by or necessary to use the tools, the degree to which
the features of object-oriented programming are supported, and the interaction of the modeling
considerations with the object-oriented feaLures. The following section delineates these issues
in order to form a framework for the discussion of tool featirts to be found in section 3.

APPROACHES TO MODELING

Event Selection Strategy

Simulation languages have been characterized successfully by event selection strategy as: event
scheduling, activity scanning, and process interaction [Kiviat 71, Fishman 73]. Figure 5 in
[Hooper 86] characterizes these strategies in detail. Key consequences of the event selection
strategy include:

" What are the components that the modeler develops?
" How is the state of the simulation components expressed?
* How do the components interact with each other and with the system, i.e., what is

the world view of the component?

Earlier simulation languages developed in the United States implemented the event scheduling
strategy, while the activity scanning strategy gained some popularity in Europe. Many later
simulation languages (and later versions of older simulation languages) have adopted the
process interaction strategy. It is widely recognized that the process interaction strategy results
in a model representation that is "closer to the problem" and thus results in easier and more
straightforward model development.

This correspondence of real-world problem to expression in code has been recognized as one
of the advantages of Object-Oriented Programming (OOP). This is not a coincidence since
much of the early motivation for OOP can be attributed to Simula-67 (which evolved from the
simulation language Simula I) and the evolution of other simulation languages. Thus, it should
not be surprising that all of the object-oriented simulation tools examined in this paper
incorporate the process interaction strategy.

3

World Views

Certain simulations, such as the bank example described later, differ greatly in design when
written with the different tools, despite the fact that all of the tools share the process interaction
strategy. These differences arise because of biases toward particular design decompositions
(or world-views) that are either supported or required by the tools. In particular, the
identification during the design decomposition of active versus passive components varies
according to the tool used.

Active components are defined as those capable of initiating activities, while passive
components are incapable of initiating activities. Each active component usually has its own
independent ime-lint, while passive components usually pass time only in a synchrony with
an active component, e.g., a passive resource that is held by an active job. Active components
usually have more complicated behaviors, so code tends to be concentrated in their
representation.

Bezivin [87] has defined two extremes of object-oriented decomposition. In one extreme,
which we will call entity-oriented, the active components interact by exchanging messages,
which are the passive components. In the thread-oriented model, the active components may
send messages to the passive components, but not vice-versa. The passive components
mediate the communication between active components, which never communicate directly.
As an example, consider modeling a road traffic simulation problem. The entity-oriented
approach would model the crossroads as objects that send the vehicles as messages between
them. In the thread-oriented approach, the vehicles are the active clients of the crossroads and
make decisions to go from one crossroad to another.

Development of an entity-oriented model generally begins with a decomposition of the system
being modeled into places at which processing is done. These places, also called entities or
nodes, become the active components of the simulation. The events or transactions that
represent the interactions of the entities (the work flowing through them) become the passive
components of the model. Modeling then becomes primarily a process of describing precisely
and correctly the behavior of each of the entities in response to all of the possible sequences of
stimuli, although some consideration must also be givcn to the information carried by the
events.

In contrast, the development of a thread-oriented model concentrates on the flow of processing
through the system being modeled. Consequently, active components are sometimes called
mobile components, while passive components are called stationary components since they are
used to represent fixed services provided to active components. Once the major processing
threads are identified, the modeling process is primarily one of specifying the processing steps
taken by each of the threads, although the resources or services acquired by the active
component,; must also be described.

4

The distinction between these two approaches may not yet seem significant to some readers.
Indeed, the authors do not know of cases of systems that could not be represented in either of
these world-views. However, there certainly are systems for which one of the approaches is
better suited than the other. The complexity of behavior of the components of the systems and
the bias of the approaches to providing more powerful constructs for the active components
than for passive components determines the suitability of one approach over the other.
Consider two seemingly similar problems: the road traffic problem introduced above and a
train traffic problem. In the road traffic problem, the driver of the vehicles makes the decisions
as to which route to take, and the designations of vehicles as the active components and the
crossroads as the passive components are most natural. However, in the train traffic problem,
the state of the switches at the intersections determines the route of the train. So, it seems most
natural to specify the switches with active components and represent the trains with passive
components.

The decomposition strategies discussed above are the extremes. In most real-world systems,
the distinction of active and passive components is not as straightforward. In the road traffic
problem above, the presence of traffic lights would certainly affect the outcome of the
simulation. However, the state of the light cannot be said to be an inherent part of the behavior
of the vehicle, indicating that the crossroad should be able to initiate activities such as the
release of vehicles when a light turns green, thus indicating that the cross-roads should also be
an active component. But, since active components cannot interact directly with each other,
alternate methods are usually implemented. Also consider the train traffic problem. To say that
the trains are completely passive ignores the fact that they may break down or otherwise deviate
from their schedules.

There are also systems for which identification of the more active components is not clear-cut.
Delcambre [90] considers an apparel manufacturing operation consisting of a number of
workstations containing specialized equipment, a number of employees that operate the
equipment at the workstations and may be qualified to operate only certain equipment, and job
orders that specify the apparel to be manufactured. The job orders contain the information that
is used to determine the processing steps involved in completing the order. Each step in the
processing requires a workstation with the appropriate equipment and an operator skilled in the
operation of the equipment. First, consider a thread-oriented model of this problem. The job
orders, or perhaps more precisely the jobs themselves, can be the active components since they
specify the threads of processing through the system. The workstations are obviously passive
components that perform services for the active components. The workers, however, cannot
be easily categorized. To the job, they are resources that must be acquired, and so would seem
to be passive components. However, they are active with respect to staffing the workstations
since they are constrained by their qualifications, implement the shop manager's scheduling
policy or determine their own work preferences, take coffee and rest room breaks, and
generally behave in ways that managers abhor. Forcing the developer to model the workers as
strictly active or strictly passive forces an unnatural structure on the simulation and may result
in ungainly artifacts. Attempting to apply an entirely entity-oriented decomposition results in
the same dilemma, even though the assignment of the other components would be the reverse

5

of that in the thread-oriented decomposition: workstations would be entities sending job-orders
as messages to each other after completing their portion of the job, and workers would still be
problematic.

The consequences of a bias toward a particular world view are significant to the implementer.
As mentioned, more code is generally written for active components, even more than is a
natural consequence of the more complex behavior of the more active components. This code
may also have to include artifacts of simulation such as event scheduling, random distribution
generation, and data collection.

While the bias of a tool toward a particular decomposition strategy may determine the suitability
of the tool for a particular problem, the flexibility of a tool in accommodating a number of
decomposition strategies will determine its usefulness for a broad range of problems. The
tools evaluated differ both in their bias in the world-view that should be used in models
developed and in their flexibility in supporting the different world-views. MODSIM II,
MOOSE, and Smalltalk are thread-oriented, while Sim++ and SES/workbench are entity-
oriented. Each has features that support models of the other world view to varying extents.
MODSIM II provides trigger objects to synchronize two active components. Sim++ events
may contain C++ objects with their own methods. SES/workbench transactions contain an
identifier that other transactions may use to specify synchronization. Smalltalk is unique in that
it is completely object-oriented and open. It can be modified to be entity-oriented. Generally,
tools that are less biased to one extreme are also more flexible.

Other consequences of a bias in world view include limitations on support of object-oriented
development and the ability to support parallel simulation execution. A strong distinction
between passive and active components may weaken the passive component's role as a "first-
class" object in the development process. It may preclude the ability to derive passive objects
by inheritance or otherwise customize the behavior of the passive components. Most attempts
at parallel simulation have adopted the entity-oriented world view, since it seems to result in a
relatively small number of components of sufficiently large granularity to overwhelm
communication and synchronization overheads.

The event selection strategy and the world view of a tool combine to determine the overall
modeling approach of the tool. As mentioned, all of the tools we investigated incorporate the
process interaction strategy. In all of these tools, the active components are processes. The
simulation primitives available to these processes include many that resemble primitives used in
parallel programming, such as synchronization, interrupt, and delay constructs.

6

SUPPORT FOR OBJECT ORIENTED DEVELOPMENT

The benefits of object-oriented development have been extensively debated in the literature.
The application of object-oriented development to simulation has not been as extensively
examined, and has generally focussed on the productivity benefits in development [Eldridge
90]. The benefits of object-orientation in the modeling process have recently been examined
[Delcambre 90].

The tools evaluated here vary widely in their support for object-oriented development. They

also differ greatly in the integration of "programming objects" with the "simulation processes."

Integration of Objects and Simulation Time

Object-oriented development results in a set of partitions of a program's data space and
execution trace that are called objects. The benefit of the object-oriented paradigm over other
module-based paradigms is that the resulting modules include both data and the code to
manipulate that data together to form abstract data types. One premise of object-oriented
development is that the resulting objects encapsulating the abstract data types are safer and less
likely to be misused, since the modules are more cohesive and their intent is captured
abstractly. Also, the objects are easy to modify as the requirements of the program evolve or
become better refined. The process of design in object-oriented development has as a goal the
delineation of the objects that will be implemented in order to fulfill the requirements of the
program. Object-oriented design often includes a modeling process, where the objects in me
real-world problem are identified and abstracted for representation in code.

Similarly, modeling in the process interaction approach to simulation also includes the
identification of the real-world components of the system being modeled. The identified
components encapsulate the processes, sequences of activities necessary to perform the work
of the system being modeled. Each process contains pieces of the execution trace that
represents the flow of simulation time. Execution will continue within one process as long as
consecutive steps in the processing of the system can occur and jump to other processes when
the next processing step cannot occur in the current process.

While the similarities between the two design processes are obvious, the differences can make
simulation development more difficult. In general, one cannot simply follow one of the
popular object-oriented design techniques and then add the simulation considerations later.
One reason for this is that present object-oriented methods are based on a static semantics, i.e.,
the passage of time is only a side-effect of the execution of the functions and procedures that
act on the objects. Coordination between objects results only from a need of one object to
invoke the processing encapsulated within another. Newer methodologies are starting to
incorporate concurrent semantics, i.e., the notion that there may be several concurrent threads
of execution that must be synchronized at certain points. This is a closer match to the approach
of process-interaction simulation design, in which the coordination of processes is required
only when the processes must synchronize in simulated time.

7

This interaction of object-oriented design and process-oriented design results in restrictions on
where object boundaries are drawn, on which modules contain the time lines, and how each
object can elapse simulation time. Different consequences were found in each of the tools
examined.

Where are the Boundaries?

The boundaries between objects are shaped not only by the object-oriented decomposition
process but also by where advances in simulation time occur. As an example, consider a
model in which a job must acquire a resource. Since it is presumed that the resource may be
acquired by a number of jobs, the resource has its own flow through simulation time, i.e., it
has its own time-line (at least conceptually; it may be modeled as being atomically attached to
the time-line of its acquirer). Thus, the procedure (or method) that acquires the resource
coordinates across time-lines and the mechanics of the discrete-event semantics must be
invoked. The visibility of these mechanisms differs between the tools examined. At one
extreme, MODSIM II simply requires that the method for acquiring a resource be designated as
one that may have simulation time side effects. At the other extreme, Sim++ requires the
explicit passing of an event from one process, the acquirer, to another, the resource. In the
former case, the method for acquiring the resource appears completely as part of the resource.
In the later case, portions of the method appear in two entities. Thus, the boundaries between
objects are drawn differently in the two tools.

Where are the Time Lines?

The interaction of the simulated time lines with the objects, i.e., the granularity of the domains
in which simulation time is constant, also vary considerably. In most tools, certain objects are
designated to be the simulation-relevant entities, i.e., the objects that define the simulation time
at which its own methods and the methods of subsidiary objects execute. However, one tool
(MODSIM II) allows each method to have its own time, even within objects. Thus, an object
could be executing each of its methods concurrently in simulation time.

What Entities Can Elapse Simulation Time?

A related consideration, at least in the tools in which there are simulation-relevant entities as
opposed to other entities, is whether the non-relevant entities can cause simulation time to pass,
and if so in what domain. The solutions vary from not allowing objects that are not simulation
entities to pass simulation time (SES/workbench), to allowing non-relevant objects to pass time
for the simulation entity which directly or indirectly invokes the object's method (Sim++), to
allowing each method to affect only its own execution trace (MODSIM II).

8

Inheritance

Inheritance is the most popular of the mechanisms in object-oriented programming (as
distinguished from merely object-oriented design) that allow related sets of objects to share
common implementations of abstract data and methods and to customize these to produce
slightly different behavior. The ideas of inheritance are borrowed from the classification
methods of biology and other natural sciences. For example, the attributes of an animal include
producing progeny whereas the attributes of a mammal are generally specialized to include live
birth from the mother and require nourishment of the young with secreted milk. The software
program for a hospital may include a class of objects representing rooms, that have attributes
such as length and width and methods such as assignment of a patient. A specialized room
would directly inherit these attributes and methods unless they were over-ridden. For example,
an isolation room would have the inherited attributes of length and width, but would over-ride
the assignment method so that only patients that have been determined to be dangerously
contagious would be assigned to them. The mechanics of specifying the similarities of the
specialized room to any other room and of differentiating the room from others is provided by
the inheritance mechanism of the software development system.

The support for inheritance, or other sharing mechanism, varies within the tools. Some do not
support any sharing mechanism other than the creation of a number of instances of an object,
whereas others provide full support. In some of the tools, inheritance is complicated by the
restriction on drawing boundaries between objects. If we return to the resource example
above, the partition of the "acquire" method across two simulation objects complicates the
derivation of a subclass of the resource class.

Multiple inheritance is a means of specifying derivation of a class of objects from two or more
parent classes. Other than the mechanics of specifying this inheritance, the issues associated
with multiple inheritance include resolution of conflicts when two parents provide methods or
attributes of the same name. Some of the tools examined do not support multiple inheritance,
while those that do differ in the method of conflict resolution.

Strong Types and Object-Orientation

The simulation tools we have investigated fall into four categories with respect to their object-
oriented behavior. Smalltalk is exclusively object-oriented (everything is an object, every piece
of code is a method) and has no typing mechanism for variables. The C++ tools (MOOSE and
Sun++) are object-oriented, but not exclusively (there exist data representations that are not
objects; there are pieces of code that are not methods) and have a strong typing mechanism for
variables. MODSIM II exhibits a subset of the object-oriented functionality of C++.
SES/workbench is actually object-based, since it lacks an inheritance mechanism.

The Smalltalk style of object-oriented programming is perhaps the oldest and most well
known. Smalltalk's lack of any typing mechanism for variables is most beneficial in the areas
of rapid prototyping and iterative refinement of software. Also, there is little argument about
the elegance of the non-typed object-oriented style: Smalltaik's semantics are far easier to

9

understand and work with than any of the other tools studied here. However, a strong typing
mechanism is missed in the areas of program readability and understandability and, as our
benchmarks show quite clearly, performance.

The question is, when a strong typing mechanism is present, is the loss of rapid
programmability and refinability worth the gain in performance. As is demonstrated by our
benchmarks, the performance benefit may be so overwhelming that all other motivations can be
suppressed. This is especially true for large simulations. For smaller simulations, and
especially for simulation prototyping, the performance benefits may not be so overwhelming.
The degree of integration of strong typing into the object-oriented constructs in the C++ and
MODSIM II models may be part of the decision of which tool to choose.

The lack of any typing semantics in Smalltalk means that a Smalltalk variable can refer to any
Smalltalk object. Furthermore, messages are resolved to methods based solely on the type of
the destination object, and this resolution is always done at run time (commonly known as late
binding). This variant of object-oriented semantics makes the implementation of generic
structures, such as collection classes, very easy and natural.

The semantics of the combination of strong typing and object orientedness in MODSIM II
basically involves the limitation of the values of variables to objects having a specific common
ancestor class. A variable of object type X can refer to object Y if and only if the object type of
object Y is a descendent of object type X. There is a single type, called ANYOBJ, to which a
variable can be typed so as to be allowed to refer to any object. Assignments between variables
of type ANYOBJ and variables of any other type are permitted. However, references to an
object's instance variables and methods cannot be made through a variable of type ANYOBJ.

The purpose of MODSIM II's strong types seems to be related to the software engineering goal
of program clarity. There is agreement among the authors that MODSIM II does accomplish
this goal very well relative to the other tools investigated here. However, the issues of
performance and ease of programming are not similarly addressed. MODSIM H methods are
all late binding despite the presence of strong typing, so messages are less efficient than
function calls. Also, overriding methods in subclasses is hindered by the requirement that the
signatures of the overriding and overridden methods be identical. This particular rule can
complicate the process of extending the functionality of a class through the formation of
subclasses. One immediate impact is that the object initialization method ObjInit cannot have
any arguments, making it much less useful than object constructors in Smalltalk and C++.

C++, possibility because of its kinship with C, focuses primarily on how strong types can
increase the performance of object-oriented programs. Unlike both MODSIM II and Smalltalk,
most methods in C++ are early binding, allowing the compiler to translate message sends
directly into function calls without any additional run-time search. Late binding can be
achieved through the use of virtual methods which have a small associated performance
penalty.

10

Unlike MODSIM II, C++ possesses overloading semantics, which allows multiple methods
with the same name and different argument signatures to exist without difficulty. This permits
developers of subclasses to extend the functionality of superclasses by adding and/or changing
arguments when overriding methods. A further advantage of overloading is the ability to
overload most of the operators in C++, including arithmetic and logical operators, comparison
operators, the assignment operator, dereference operators, and the function application
operator.

Assigning between variables of different class types in C++ can be tricky. The actual rule for
such assignments is something like: assignment between variables of different class types is
permitted directly if the type of the source variable (or expression) is a descendent of the type
of the destination variable; assignment in the opposite direction from ancestor to descendent is
possible using casting, but it is only safe if the destination variable type is a leftmost ancestor
(either the first listed parent class, or the first listed parent class of the first listed parent class,
etc.) of the object's class, or if the destination variable type is a virtual ancestor of the object's
class. This rule can complicate the task of writing fully reusable methods, especially for
generic structures such as collections. Other rules involving class typed arguments to functions
and methods, and how overloaded calls are resolved, are also complex. In fact, one rule in
C++ that allows a derived class reference (a generalized variable of a descendent class type) to
be implicitly converted to a public base class reference (a generalized variable of an ancestor
class type) allows unsafe assignments to be performed without so much as a warning.

Dynamic Creation of Simulation Objects

Some problems are best modeled with models that require the creation of active simulation
components. Consider a model of a typical multi-user computer system where programs run
within operating system processes on processors. Since processes are created dynamically by
the operating system in response to users or user programs, they cannot be statically created at
initialization and yet are complex enough that they should have their own associated timeline.
Thus, it might be important to the modeler to have the capability to dynamically create
simulation objects.

Two of the tools (Sir++ and SES/workbench) have re:. ions that prohibit the creation of
simulation objects after either development or after an h;.dl phase. Not coincidentally, these
tools are also the ones that are most entity-oriented.

11

SIMULATION CONSTRUCTS

Time Control

It is a tautology to say that time control mechanisms are required for simulation. However,
there have been a wide range of time control mechanisms implemented in different simulation
languages. Much of the difference in these mechanisms is directly attributable to differences in
either the event selection strategy or the world-view supported by the modeling tool. These
considerations have already been discussed.

All of the tools examined provide time control mechanisms that are more than adequate for any
problem which we were able to conceive.

Time control mechanisms differ markedly in their visibility, however. In some tools the
passing of events is explicit, while others hide some events, such as the completion of a hold,
and in others events are never visible.

Preemption

One important time-control mechanism that caused some trouble in earlier simulation languages
is the ability to preempt or interrupt a process after it has started. This capability has a broad
range of applications.

The support for preemption, like other time control issues, is tied up with the other modeling
concerns. The tools have widely different implementation mechanisms.

Pre-Defined Classes

Pre-defined classes can be used to represent parts of the modeled system that conform to the
behavior defined by the class. These pre-defined classes, when they can be used, cut
development time and size. If the extensibility of the tool is restricted, as discussed below, the
pre-defined classes may define the range of applicability of the tool.

All tools that favor the thread-oriented decomposition provide a resource class. A resource is a
depository of a number of tokens that can be acquired, held, and given back either singly or
multiply. An attempt to acquire one or more tokens when the requested number are not
available results in the blocking (in simulation time) of the acquirer.

The tools differ in number and types of pre-defined classes. This is discussed further in the
next section, where we cover the tools individually.

12

Probability Distributions

Random number generation is an important part of most simulations. The tools examined vary
only slightly in the number and types of random distributions provided. We did not undertake
any evaluation of the quality of the generators. During our benchmarking, we did experience a
problem with random number generation in Smalltalk-80. A distribution which should have
returned only positive numbers returned zero on occasion, presumably due to round-off error.

Data Collection

Data collection support includes support for accumulation of statistical data, statistical analysis,
and I/O operations to allow archives. All of the commercial tools examined provide very
similar capabilities. Data collection in MOOSE is not implemented.

EXTENSIBILITY

The history of simulation tools has supported two trends: the extension of an existing general
purpose language to include simulation support, or the creation of a special-purpose simulation
language. The first presumedly provides greater extensibility, while the latter presumedly
provides greater integration and ease of use.

Different problems require different degrees of extensibility. Of the tools examined, three
(Smalltalk, Sim++, MOOSE) are extensions of existing general-purpose languages, while the
others (MODSIM II, SES/workbench) are simulation-specific developments. Of these, one is
claiming to be robust enough for general purpose use, while the other is extensible through its
own language or through its translation to C.

GRAPHICAL INTERFACES AND ANIMATION

Graphical interfaces are being used in simulation in both the development process and in the
display of results. SES/workbench provides a graphical interface for the development of
models. Instances of pre-defined object types are selected from a palette, positioned within a
window, and connected using Macintosh-like point-and-click methods. Pop-up boxes are
provided for forms that further parameterize the behavior of the model components. The latest
release of SES/workbench also provides animation capability.

MODSIM II provides a library of graphical objects which can be used to animate the results of
the simulation or to present the results in graphs or other presentation graphics.

13

SECTION 3

TOOLS

Our selection of tools was biased by what was already available at our corporation and what we
could acquire for reasonable cost. There are many interesting simulation systems that we did
not consider. For example, SimKit (with KEE) from IntelliCorp provides a wide range of
simulation and expert system capability. Also, other object-oriented programming languages,
such as Eiffel and Simula, have not been considered. LISP, as the base language of ERIC, has
been involved in our study, but only to a limited extent.

In the subsections below, we provide a summary of the capabilities of the commercial products
that we did consider, and then a description of MOOSE.

MODSIM II

MODSIM II is a "general purpose, modular, block-structured high-level programming
language which provides direct support for object-oriented programming and discrete-event
simulation" [Belanger 90a, 90b]. CACI Products Company markets MODSIM II as the
commercial version of ModSim, which was created on a US Army contract. Modula-2 was the
base language used in the creation of ModSim.

Simulation in MODSIM H is thread-oriented. Threads are created by specially designated
methods, called tell methods. A tell method programs the events that will occur in the thread.
Tell methods are asynchronous and cannot return values; when one is called, a new thread is
created and the calling unit continues its execution. Tell methods are also reentrant, meaning
that a new thread can be started while other copies are running. An ask method is the more
traditional method call, in that the calling unit waits until the ask method completes. One of the
limitations of MODSIM H is that simulation time can be elapsed only directly inside tell
methods. Thus, if a tell method calls an ask method, that ask method cannot directly execute a
wait statement.

The object-oriented features of MODSIM H are sometimes restricted to agree with the type
structure. In particular, a method can only be overridden by another method taking precisely
the same arguments. Multiple inheritance is supported, and ambiguous references are flagged
as errors.

Code in MODSIM II is written in separate main, definition and implementation modules. The
system comes with a smart compilation tool, mscomp, that can build a complete simulation
from a main module, recompiling and linking the appropriate submodules. The compiler for
MODSIM II generates C as output.

15

One of the unique capabilities of MODSIM I is that it supports an interface to CACI's graphics
package, SIMGRAPHICS. CACI claims that animated simulation demonstrations and
interactive I/O are facilitated by SIMGRAPHICS, but we did not test these features.

SES/WORKBENCH

Scientific and Engineering Software, Inc. (SES), introduced SES/workbench in March of
1989. Workbench is based heavily on queuing theory, having evolved from the earlier
PAWS/GPSM (Performance Analyst's Workbench System / Graphical Programming of
Simulation Models). Our tests were performed using release 1. 11 of Workbench, which was
the most recent version until February 1991, when Release 2.0 became available. Release 2.0
reportedly contains animation capability, which is completely missing from Release 1.

A unique feature of SES/workbench is the graphical front end, SES/design, which allows
specification of a simulation without programming. In SESfdesign, a simulation is specified as
a hierarchy of directed graphs. Simulation threads are called transactions in Workbench.
Transactions flow along arcs in the directed graph. Nodes in the graphs can manage
transactions, e.g., source nodes, which create transactions, or manage resources, e.g., allocate
nodes, where a transaction queues for a resource. A small set of standard predefined nodes is
supplied, together with a user node that must be coded by the user in C. The events in a
transaction are not directly programmed, but arise as the transaction traverses the graph. For
this reason, we view Workbench as entity-oriented. Transactions, however, do play an
important role in Workbench. Mechanisms exist for naming transactions and interrupting them
at arbitrary points in their execution.

The graphs created by SES/design are stored as ASCII files. These files are compiled by
Workbench into a simulation language, SES/sim. This language is a superset of C, containing
extensions that were influenced by PAWS and by C++. Users can program directly in the
simulation language, if they desire. For our benchmarks, we used the graphical interface. Our
main complaint is the difficulty of debugging. Errors in the graph file are usually not
discovered until the simulation language is compiled into C. The generated error messages
refer to line numbers in the machine-generated simulation language file. This leaves the user
with the problem of trying to trace an error back to an arc or node in the graphical input. Some
improvements to debugging are claimed by SES for Release 2.0.

Object-orientation is not an emphasized part of Workbench. The SES/sim language does
contain constructs for specifying classes and creating instances, similar to C++. The SES/sim
manual lists only very basic facilities for object-orientation. In particular, there appears to be
no provision for declaring base classes or member functions to be public or private, no
friendship mechanism, no operator overloading - in short, most of the more elaborate
constructs of C++ are not present. The object-oriented features that do exist are more likely to
be used by the SES tool than by the simulation designer.

16

Sim++

Sim++ is a C++ library of simulation constructs produced by Jade Simulations International
Corporation of Calgary, Canada. The unique feature of Sim++ is support for parallel
execution using the TimeWarp Distributed run-time system. The later versions of Sim++
require Release 2.0 of ATU C++, which the user licenses separately. Jade recommends 8
nodes as the minimum reasonable parallel configuration. Networks of Sun -3 or -4
workstations, the BBN Butterfly, and the Meiko Computing Surface transputer array are the
supported hardware. The Distributed run-time environment provides deterministic execution
despite being distributed. A number of tools are provided to increase execution speed-up.
Sim++ also provides an Optimized Sequential run-time executive for developing, debugging,
and executing simulations on a single machine. The optimization removes most of the
execution overhead associated with parallel execution.

The results in the following sections were obtained by using Release 3.0 of Sim++ on a single
workstation using the Optimized Sequential run-time system. While it might be expected that
the emphasis on performance of the sequential executive is not as great as that for the
distributed executive, and that the benchmark results for Sim++ might suffer as a result, we did
not use the distributed executive for several reasons. First, we did not have it. Second, the
single-feature benchmarks would not have benefitted from parallel execution. Finally, the
characterization of the performance of parallel systems is more complicated in general and was
felt to be beyond the resources available.

The Sim++ simulation approach is entity-oriented. A static set of simulation entities is created
for each simulation run from sub-classes of the Sim++-provided sim.e.entity class. These
sim.entity sub-classes define the behavior of the entities in response to receiving (or failing to
receive) events. Events passed between entities are derived from the simevent class that
includes an integer field for event typing and a pointer to allow inclusion of a body containing
state information in the event. While an event body may be any C++ object, there is no
enforcement of consistency between the integer event type and the supplied event body. This
consideration and the lack of a mechanism to directly tie event types to entity methods tends to
limit the usefulness of inheritance to defining components of entities and events rather than
whole entities or events.

Preemption is supported by a Hold-For construct that is interrupted by either any event or an
event that passes a selection criterion. Selection criteria include any combination of event
originator, event type, or contents. While this construct may not be as readable as the interrupt
mechanism in MODSIM II, it may be more flexible.

While there is no pre-built support for resources, resource and consumer classes were built
fairly simply for the fourth single-feature benchmark describea in the following section. These
classes used the Hold_For construct. Events requesting a resource were deferred while a
resource was held by another requestor. After release, the next requesting event is selected
from the system-managed deferred event queue.

17

While no explicit support for graphical input or animation was provided, the multiple
inheritance feature of the C++ base of Sim++ allows easy extension by integration with other
libraries.

SMALLTALK-80

Smalltalk is a general-purpose, object-oriented programming language. For our tests, we used
Smalltalk-80, a product of ParcPlace Systems. We had access to Release 2.5 on Macintosh
hardware, and Release 4 (the successor to 2.5) on Sun workstations. A collection of
simulation constructs for Smailtalk is described in the Smalltalk "blue book" [Goldberg 83] and
is implemented in Smalltalk-80. The constructs encourage the thread-oriented approach, but
the entity-oriented approach can also be used. There is a useful and general approach to
passive and active resources. No provision is made for interrupts, but this was easily fixed.
One of the main advantages of Smalltalk is the open nature of the system, with full source code
visible to the user. For simulation, the event queue mechanisms can be examined and changed,
if desired. In the browser tool, we were able to add interrupt mechanisms to the simulation
constructs. The new constructs merged seamlessly into the existing ones.

There are three possible problem areas in Smalltalk. The first, and most important, is the
performance problem. As a rough rule of thumb for general computing, Smalltalk is about one
order of magnitude slower than optimized C [Chambers 891. Doyle's data confirms this rule
for a simulation benchmark [Doyle 90], and our timing studies show similar results. For
simulations where performance is not a critical factor, Smalltalk may be a very good choice.
The second potential problem is the lack of multiple inheritance. There was at one time an
experimental implementation of multiple inheritance in Smalltalk-80 [Borning xx], but it was
eliminated after version 2.3. Currently, only single inheritance is supported in Smalltalk-80.
The third potential problem is the Smalltalk learning curve. The programming language and
environment for Smalltalk-80 form a uniquely powerful system. The time required to become
proficient in Smalltalk-80 is undoubtedly longer than that for MODSIM II or SES/workbench.
The investment in learning time pays off in increased capability.

A PROTOTYPE C++ SIMULATION LIBRARY -- MOOSE

MOOSE is a C++ implementation of the process model of discrete simulation. This model is
most similar to the MODSIM II model, where each TELL method execution is a process.
However, unlike MODSIM II, simulation processes are first class objects. Like MODSIM II,
MOOSE supports dynamic creation of processes.

The programmer interface to MOOSE was designed to be similar in nature to that of
MODSIM II because of the authors' familiarity with that tool, and because of MODSIM U's
ease of programmability.

18

The majority of functionality within MOOSE is provided by class Process. The simulation
programmer is expected to provide subclasses of class Process, each with its own definition
for the start() virtual function member, and its own set of constructors. The arguments to a
process are provided through the constructors, and are stored within data members of the
process object. The start() member function is called by the process scheduler to initiate the
process. MOOSE provides several scheduling primitives that can be called from anywhere
within a process' execution.

Processes in MOOSE can be created dynamically, and are expected to have varying lifetimes.
The memory consumed by a MOOSE process is reclaimed when the process terminates. The
MOOSE programmer is protected against dangling references to processes that have been
garbage collected after termination by the use of a safe referencing scheme implemented by the
process identifier (PID) class.

MOOSE is implemented using only portable C++ functionality. The process class is
implemented using the setjmp and longjmp functions (from the standard C include file
setjmp.h) to create coroutines on the execution stack. Such an implementation of processes can
run in any C++ environment. However, the use of virtual memory machines is strongly
recommended for simulations of any significant size because the setjmp/longjmp coroutining
technique uses large amounts of address space (the system allocates 4K bytes by default for
each process' stack), even though the amount of virtual memory actually used may be low
(many processes use only a small portion of their stack).

The MOOSE event list used for scheduling processes has a tightly coded heapsort-based
priority queue implementation. This implementation was found to be slightly faster on both
Sun-3s and Sun-4s than several alternatives in the O(NlogN) category, such as splay trees and
leftist trees. The heapsort algorithm is array-based, and requires that the heap array be
allocated statically. However, the heap array is reallocated (using the realloc function) as
needed. The additional complexity of the reallocation of the heap array, including the check for
overflow prior to every insertion, did not prevent the heapsort-based implementation from
running faster than the others tested (see the results of the Test 1 benchmark).

The process scheduling primitives in MOOSE, including process waiting and interrupts,
together with the fact that MOOSE processes are directly accessible, have been shown to be
sufficient for the implementation of many diverse simulation constructs, including resources
and triggers.

ERIC

ERIC is an object-oriented simulation tool designed and developed at Rome Labs [Hilton
19901. Initially, ERIC stood for Enhanced ROSS in Common LISP, but as ERIC was
developed, it diverged from ROSS (a simulation tool from RAND Corporation) and the name
is no longer considered ar. acronym. Compared to the other tools that we considered, ERIC is
unique in that it is event-driven. We completed our first four benchmarks for ERIC, but the

19

fifth benchmark and the bank simulation require a notion of interrupt. We could find no simple
way to model interrupts in ERIC, due to its event-driven nature, and hence we did not complete
the last two benchmarks for this system. For our tests, we used a version of ERIC in Allegro
Common Lisp with the Common Lisp Object System (CLOS).

20

SECTION 4

BENCHMARKS

The design of performance benchmarks for object-oriented systems seems to be an uncharted
area. For simulation systems, Doyle [Doyle 90] studied several tools using a single
benchmark. We have chosen five feature-specific benchmarks, and a single general purpose
benchmark. The benchmarks were implemented and timed in each of the tested tools.

SINGLE FEATURE BENCHMARKS

These are small benchmarks designed to test single features of the simulation tool. Each is
parameterized by a single integer input usually representing the number of threads generated
(test 5 is the exception; the integer parameter in that test represents the number of interrupts
generated). The results are graphed and discussed in the next section. Abstractly, a thread is a
sequence of causally related events operating on the same state infermation. Exactly how a
"thread" is implemented is different for the different simulation tools. In the transaction-based
simulation models, a thread corresponds to a transaction. In the process-based simulation
models, a thread corresponds to a process. Within a thread, at most one event can occur at any
simulation time.

Test 1 - Sorting Threads

Initially, N threads are created. Each thread is given a starting simulation time chosen from a
uniformly distributed random variable. The threads simply terminate as soon as they are
started. The system must sort and execute the threads. Asymptotic performance on this test
ranges from nearly linear for MOOSE to quadratic on some of the commercial tools. Also, for
Sim++ and ERIC, two tests were performed to illustrate the difference in performance when
each thread is associated with a different object and when all threads are associated with the
same object. In both Sim++ and ERIC, the event list sorting algorithm's asymptotic
performance is better for the case when each thread is associated with a different object.

This thread sorting test is expected to predict the relative performance of the simulation tools on
simulations containing a large number of threads. Had all of the tools used similar sorting
procedures, the test would not be an accurate predictor. However, because of the quadratic
behavior of some of the sorting algorithms, the simulation systems with nearly linear behavior
(actually, O[NlogN] complexity) are clearly favored for large simulations over those with
quadratic behavior.

21

Test 2 - Thread Creation

This test is designed to compare the overhead involved in creating and manipulating individual
threads (all for the same simulation object) without the overhead associated with thread sorting
measured in test 1. For this test, a single thread is initially created which spawns a child thread
and then terminates. The child thread then spawns a third generation thread and terminates,
and so on until N threads have been generated. At any time, there is at most one thread waiting
to execute, so the overhead of sorting is not incurred.

Differences between the semantics of threads in the tools compared should be noted when
examining the results of this test. Those simulation tools that have process semantics for
threads (Smalltalk, MOOSE, MODSIM II) are trading overhead as measured in this test for
power within a process, which in most cases would translate to fewer thread creations in these
tools for given simulation than for the non-process oriented tools (Sim++ and
SES/workbench). MODSIM II is actually somewhat of a hybrid between the process and non-
process models, since threads in MODSIM II can only elapse simulation time from within their
outermost stack frame.

Test 3 - Synchronous Thread Creation

Modularity issues arise in simulation languages just as they do in standard programming
languages. The software engineering ideal for modularity is that there should be a negligible
tradeoff of performance for modularity inherent in the language. This, however, is difficult to
test, since the notion of modularity is not nearly as formalizable and measurable as is
performance. This test is an attempt to show that the implementation of some simulation
systems encourages a "demodularization" of code exceeding that normally experienced in
standard programming languages.

In standard programming languages, the most common unit of modularization is the function
(procedures and methods are here considered synonymous with functions). Small, easy to
understand functions that encapsulate simple ideas are preferred for modularity, readability,
maintainability, and nearly every other software engineering concern. It is generally accepted
that code which localizes concepts is to be preferred. The largest drawback of function
modularity is the added overhead of the extra function calls, but this is not a severe
performance penalty in most programming languages. For one of the simulation systems
investigated here, however, function modularity within threads can impact performance
considerably. The problem occurs in MODSIM II, when a single thread must pass through
several functions, any of which may or may not elapse simulation time. In all other tools, any
function (or function equivalent, such as a subgraph in SES/workbench or method in
MODSIM II or MOOSE) may elapse simulation time within a thread. It is possible to spawn a
new thread that is synchronously tied to its parent (the parent will sleep until the child is done,
then the parent will continue), but this is not necessary. In MODSIM II, however, it is

22

necessary to spawn a synchronous child thread using the WAIT FOR construct to permit the
called method to elapse simulation time. This benchmark is designed to demonstrate the impact
on performance that this restriction can have. 1

In test 3, a simulation thread synchronously calls a child function. This behavior is continued
to a depth equal to the input parameter. In test 3a, the function calls do not elapse simulation
time. In test 3b, each call elapses one unit of simulation time. In both cases, we have coded
the test in a manner that would not prohibit the child from elapsing simulation time (which
means that a WAIT FOR construct is used in MODSIM II, while direct function calls are used
in all other tools).

Test 4 - Resource Queues

Resources are one of the most common constructs found in simulation systems. Resources are
generally represented as queues with some standard queuing discipline (usually FIFO) and
some number of tokens. Threads can request some of the tokens from a resource. If the
resource has sufficient tokens to fulfill the request, the thread is allowed to continue. If the
resource has too few tokens to fulfill the request, then the requesting thread is queued and its
execution is blocked. Threads then can release tokens back to resources, which may cause the
resources to dequeue waiting threads and allow them to continue executing.

Of the simulation systems tested, all but Sim++ and ERIC contain some built in resource
construct with semantics equivalent to that described above. For both Sim++ and ERIC,
resources are implemented as separate simulation objects that use event rescheduling to achieve
the desired queuing and waiting semantics.

For this resource test, a resource containing single token is created, and N threads request the
resource. Care has been taken to construct this test so that at most one thread at any time is
scheduled by thread sorting (as tested in test 1), so that the overhead of the sorting algorithm is
not felt. Performance was generally linear here, except for MODSIM II, which exhibited
quadratic performance. We have since sent CACI our code for this test. They profiled it to
find the performance problem areas and report that Release 1.6 of MODSIM will include
improvements.

Test 5 - Interrupts

Interrupts, like resources, are common to most simulation systems. Interrupts present a
semantics for the control of threads by other threads. The target thread of an interrupt is
always in a wait state, since this the only way that the source thread can have time to initiate the
interrupt. The source thread of the interrupt can interrupt the target using some construct that
requires a way of denoting the target thread (in MODSIM II, where threads are not

1 Subsequent to our work, CACI has apparently corrected this problem in Release 1.7 with the
introduction of WAIT FOR methods. When WAIT FOR methods are invoked by a WAIT
FOR construct, no context switch occurs.

23

independently namable entities, a thread is denoted by the host object and the method name -
this technique may not always indicate a unique thread). The target thread of the interrupt is
scheduled to execute immediately after the interrupt (or, at least before any simulation time
elapses), and control within the thread is usually transferred to some interrupt handler.

Of the simulation systems tested, all but Sime++, Smalltalk, and ERIC contain a built in
interrupt facility. For Smalltalk, an interrupt mechanism was added simply by adding the
appropriate methods to some of the built in simulation classes. For Sim++ and ERIC, an event
rescheduling feature was used to obtain the interrupt semantcs.

For this test, a source thread and a target thread are created. The source thread will interrupt
the target thread N times, each time while the target thread is waiting within a delay construct.
The interrupt handler for the target thread simply re-invokes the delay, causing the target thread
to wait for the next interrupt. For this test, all tools showed similar performance.

BANK SIMULATION BENCHMARK

The bank simulation is our revision and enlargement of an example supplied with MODSIM U.
The purpose of this benchmark is to test many simulation system features together within the
context of a "typical" simulation. The simulation consists of "customers" and "VIPs" that enter
a simulation of a bank, requiring service. There are a fixed number of identical servers
("tellers") in the system. When a customer enters the simulation, it selects a server with the
shortest queue. When a VIP enters, it selects a server at random and attempts to receive
immediate service. If the teller chosen by a VIP is serving a non-VIP customer, the customer
is interrupted and the VIP is served; if the server is serving another VIP, the requesting VIP
simply departs the system in disgust. The servicing of a customer interrupted by a VIP is
resumed after the VIP has been serviced.

24

Entrance

5:: Male
Lavatory

5~i 5 5 55 Female

I I I Typical customer path

Tellers(n) / - - Typical VIP path

Exit

Figure 1. Bank Simulation Sketch

To make the simulation a bit more interesting, while a customer is in a queue, it may "time-out"
and be required to visit the lavatory. A lavatory has a number of stalls. Customers visit the
lavatory appropriate to their gender and use the first available open stall. After the lavatory visit
is complete, the customer again selects a teller with the shortest queue. Furthermore, every
customer has a 'lavatory line length tolerance" - if the line to the lavatory exceeds this
tolerance, the customer will leave the bank and seek "alternate facilities," rather than wait on
line. The bank thus has an implicit saturation point, past which a higher rate of arrival of
customers will result only in the excess customers leaving the bank. However, the complex
interaction of customers, VIPs, and visits to the lavatory makes any analytic determination of
the saturation point non-triviaL

The generic benchmark was coded and successfully run on all systems except MODSM IL
Under Release 1.5 of MODSIM II, we experienced run-time errors related to the interrupt
constructs. We reported the error and received a beta version of Release 1.6 under which the
simulation runs correctly.

25

SECTION 5

TIMING RESULTS

TEST 1

The timing results for Test 1 are shown in figure 2 below. Since the benchmark tests the
sorting algorithm implemented by the run-time environment of the simulation tools, asymptotic
behavior of O(n log n) was expected. Surprisingly, most of the tools exhibited quadratic
behavior. The exceptions are MOOSE and Sim++ (when the threads are scheduled for distinct
entities). Not as surprisingly, Smatalk performed significantly worse than any of the other
tools.

Note that the "N queues" result for Sim++ was measured as the difference between two
separate tests so that the overhead of creating entities could be removed. The cost of creating
entities was significantly more than the cost of creating threads.

The inability to run the SES/workbench benchmark for more then 6,000 iterations is
unexplained. Our implementation simply never terminated at this input level. The lack of data
past 7,000 iterations of the Sim++ (N queues) implementation reflects the point at which the
physical memory of the workstation used was exhausted. After that point the effects of paging
could not be separated and the data was discarded.

The authors speculate that the tools are optimized for simulations where the number of events
on the queue is not large and, therefore, the constant multiplier may be a greater consideration
than the order of the sorting algorithm used. Also, we do not know if using uniformly
distributed event times is a suitable approximation to the function of typical simulations, where
event times may appear in an almost sorted order.

TEST 2

Figures 3 and 4 show the results of this benchmark. Once again Smailtalk took much more
time to perform the same number of iterations as any of the other tools. In fact, the Smailtalk
results are removed from figure 4 so that the relative differences of the other tools could be
shown clearly. As expected, the cost of creating a thread is roughly linear in the number of
threads created.

27

Seconds x100 Smsfafltek
7

SIM++
(I queue)

MODSJM Hi

'ERIC/(I queue)

4p

5ERI
(N9 ous

df

IM+

((N queues)

Itrtin x00000

Figre2.Tet Prfrmnc

2899

SeCOnd.

140

Smelitalk

120

.'ERIC

100

MOS

800

3I

5

a7
It rton

1 0

Fi u e3 e t2 P roSc

60 I29

Second&

16
Sim##

14

12

10

6

4

2

0-

0 2 4 6 8 10

Iterations x1000

Figure 4. Test 2 Performance (no Smalltalk-80 or ERIC)

30

TEST 3

The results of benchmarks 3a and 3b are shown in figures 5 and 6, respectively.

MODSIM I is the only tool where a module must be both coded and called in a particular
fashion, as a TELL method, if it might elapse simulation time. As the results of Test 3a show,
there is a substantial performance penalty for calling a TELL method, using the WAIT FOR
construct, even when the method does not elapse simulation time. The shape of the curve
suggests that the quadratic sorting algorithm is invoked, as expected from Test 1.

Not surprisingly, the performance was best in the C++-based tools MOOSE and Sim++; the
overhead introduced is that of a method invocation. Similarly, the Smalltalk implementation
introduced a method invocation overhead which, while substantially more than that of the C++-
based tools, was modest. The SES/workbench technique of invoking a subgraph was
substantially slower than even the Smalltalk method invocation.

For all of the tools, the difference between Test 3a and Test 3b should have been measured by
Test 2. This seems to be the case for all but Smalltalk, a result that is unexplained.

TEST 4

The results of this benchmark are shown in Figures 7 and 8. The results of the Smalltalk and
MODSIM I runs have been omitted from figure 8 in order to better show the data for the
others.

The overhead of acquiring a resource should be low. The implementation of a resource in the
Sim++ code shows the relatively simple operations needed and that a user can easily implement
resources with a cost that is a small multiple of the cost of creating a thread. The nonlinear
results of MODSIM II and Smalltalk are unexplained.

TEST 5

Figure 9 shows the results of this benchmark. Interrupts should incur an overhead equal to a
small multiple of the cost of creating a thread. This expectation seems to be met by each of the
tools.

31

Second*

180 NODSIM U

160

140

120

100

80

60

40

SESI Workbench

20

0- I I AYOSE

0 2 4 8 8 10

Iterations xlOOO

Figure 5. Test 3a Performiance

32

Seconds

250

200

150

-D , .AfO
DSM,

100

soV

0

5 6-S2
3

1:igure 6. Test 3b eolae

33

Second& X100

40 Smaltelk

35

30

25
A OSIM II

20

15

10 ERIC

SESi Workbench

1 2 3 4 5 6 7 8 9 10

Iterat(ons X1 000

Figure 7. Test 4 Performance

34

Seconds

140

MOOSE

120

100

Sim++

60

SESlWorkbench

40

20

1 2 3 4 5 6 7 8 9 10

Iterations x1000

Figure 8. Test 4 Performance (Smalltaik-80, MODSIM HI, and ERIC are omitted)

35

Seconlds

120

100Sm

la k

80

60

SIM+"

0

Iterations X1000

Figure 9. Test 5SPefrnanc

36

BANK SIMULATION BENCHMARK

The results of the bank simulation benchmark are shown in figure 10. Two versions of this
test were performed: one where the customer arrival rate closely matches the service times,
yielding a system operating at its saturation point; in the second, the customer arrival rate
exceeds the service capacity considerably, yielding a system operation well above its saturation
point. The operation of the bank simulation is such that the queues never grow too long
(customers leave to go to the restrooms, and leave the simulation entirely if the restroom lines
are too long), so the difference in performance between the two versions of the test for each
tool is not likely to be due to the queueing algorithms. Instead, the difference reflects the fact
that each tool spends more of its time creating customer objects (threads) in the over saturated
version than in the saturated version. For all tools except Sim++, thread creation is more
expensive than other processing.

The overall results of the bank simulation test show that the relative performance of the tools on
realistic simulation problems is predicted rather well by their relative performance on the single
feature benchmarks.

Seconds
250

200

150

100

50-

SES MOOSE SIM++ MODSIM II Smalitalk

UMover saturated U saturated

Figure 10. Bank simulation Performance

37

SECTION 6

SUMMARY AND CONCLUDING REMARKS

Our survey found a wide variety of features and performance in object-oriented simulation
tools. On the performance side, Smalltalk represents one extreme, paying major penalties for
making decisions at run time. At the other extreme is our hand-coded MOOSE, which excels at
most of the benchmarks. Our benchmarking effort has generally reinforced the rule of thumb
that Smailtalk code runs about one order of magnitude slower than comparable optimized C
code. For the other systems that compile into C, we found SES/workbench to be surprisingly
efficient, while MODSIM 11 and, to a lesser extent, Sim++ were not as efficient.

It is important to emphasize that performance is only one facet of the evaluation of a simulation
tool. In some contexts, the time and effort required to create the simulation code may be more
critical than the code's execution time. While we are confident that our benchmarking effort
provides clear performance distinctions, we feel less confident drawing conclusions concerning
the time it takes to develop a simulation in a particular tool, or the time required to maintain or
upgrade an existing simulation. These issues tend to depend on complex human factors.
Some individuals my find the graphical interface of SES/workbench to be a large advantage,
while others may feel that it is a hindrance in that it restricts access to the simulation code. The
Smalltalk-80 language and programming environment provide a powerful collection of tools,
but novice users will certainly be very bewildered during initial attempts to assimilate the
system.

To consider the issue of programming languages in general, it is clear that C++ currently has a
number of advantages: it is enjoying widespread popularity, with high quality and either public
domain or low cost implementations available for an assortment of hardware platforms.
Libraries of reusable classes for C++ are growing in number, and support for simulation is
available from several sources. Environments that support C++ program development are
becoming more widely used. The language has significant momentum and this is an important
consideration when choosing a programming language.

The three commercial simulation tools are similar in their high licensing costs and their promise
to provide users with support. In most other areas, these commercial tools are quite different.
Let us start with MODSIM II. This tool has made a substantial amount of progress since its
introduction. New features, such as compilation of circular references and WAIT FOR
methods, have been introduced as users have identified problems. In addition, CACI has
received preliminary benchmark information from us, and they have worked on the latest
release of their system to improve their performance numbers. The basic simulation style of
MODSIM II seems to be successful; we chose to exchange definitions of the bank simulation
problem in MODSIM 1I code. The graphics support provided by CACI is certainly a positive
feature. On the negative side, we have seen that the performance of MODSIM I is

39

disappointing. In terms of features, there are still a few things missing, for instance,
overloading of method names. The decision to separate methods into ASK and TELL variants,
and the subsequent addition of WAIT FOR methods, may not be the best path; a single type of
method was adopted for MOOSE.

SES/workbench was included in this study since it is a tool currently available at MITRE and it
makes some claims towards being object-oriented. In truth, the typical user interaction with
this tool will involve none of the features of object-oriented programming. The support for
object-oriented programming in the programming language SES/sim does not extend into the
graphical interface. The clear focus in this product is extended queueing networks, and this is
an important and very useful paradigm. SES has informed us that they are interested in
working on a new tool that would be more object-oriented, but no details have been
established. The performance of SES/workbench was impressive, especially given that the
code was generated from graphic input.

Sim++ is a system specifically focused on parallel execution of simulations as a means of
greatly improving performance. Our tests used only sequential Sim++, partly because the
parallel version was not available to us, and partly because performance evaluation of parallel
processing is outside the scope of what we could accomplish in this evaluation task. From the
coding of the bank simulation, it seems fair to say that Sim++ was the most difficult of our five
primary systems to develop code in. This is due to that fact that the design methodology
enforces an approach that facilitates parallel execution, but puts somewhat of an extra burden
on the programmer. The performance of Sim++ on the bank simulation was fairly good; it
appears that the performance penalty created by the focus on parallel execution is less than the
design penalty. Clearly, the utility of Sim++ must be based on how successful it is at
generating speed up when running in parallel. This would be an interesting topic for another
performance study.

To conclude, as we began this project, we found little existing work in performance analysis
for object-oriented systems. Our efforts have provided a start in this area. For simulation
tools, we developed a small set of feature benchmarks. These benchmarks are certainly not
exhaustive, and more work is necessary to assemble a complete approach to such benchmarks.
Our single larger benchmark was of a rather simple system. It would be interesting to look at a
more complex simulation. We believe it likely the performance characteristics of the tools
would remain the same in a larger benchmark. One of the advantages of doing a larger
benchmark would be to get more information on program development time.

40

LIST OF REFERENCES

Agre, J. R., and P. A.Tinker, January 1991, "Useful Extensions to a Time Warp Simulation
System," Proceedings of the 1991 SCS Conference on Parallel and Distributed Simulation,
Anaheim, CA, pages 78-85.

Bizivin, J., October 1987, "Some Experiments in Object-Oriented Simulation," Proceedings of
OOPSLA 87, Kissimee, FL, pages 394-405.

Belanger, R., December 1990, "MODSIM II - A Modular, Object-Oriented Language,"
Proceedings of the 1990 Winter Simulation Conference, New Orleans, pages 118-122.

Belanger, R., B. Donovan, K. Morse, and D. Rockower, 1990, MODSIM II, The Language
for Object-oriented Programming: Reference Manual, La Jolla, CA: CACI Products Company.

Bensley, E. H., V. T. Giddings, J. I. Leivent, and R. J. Watro, January 1992,
"A Performance-based Comparison of Object-oriented Simulation Tools," Proceedings of
Object Oriented Simulation 1992, Newport Beach, CA, pages 47-51.

Borning, A. H., and Ingalls, D. H. H., 1982, Multiple inheritance in Smalltalk-80,
Proceedings of AAAI, 1982, Pittsburg, PA, pp. 234-237.

Chambers, C., D. Ungar, and E. Lee, October 1989, "An Efficient Implementation of Self, a
Dynamically-typed Object-oriented Language Based on Prototypes, Proceedings of OOPSLA
89, New Orleans, LA, pages 49-70.

Delcambre, L. M. L., S. P. Landry, L. Pollacia, and J. Waramahaputi, January 1990,
"Specifying Object Flow in an Object-Oriented Database for Simulation", Object Oriented
Simulation: Proceedings of the SCS Multiconference on Object Oriented Simulation, San
Diego, CA., pages 75-80.

Doyle, R. J., January 1990, "Object-oriented Simulation Programming", 1990 SCS
Conference on Object Oriented Simulation, pages 1- 6.

Eldredge, D. L., J. D. McGregor, and M. K. Summers, February 1990, "Applying the
Object-oriented Paradigm to Discrete Event Simulations Using the C++ Language",
Simulation, pages 83-91.

Fishman, G. S., 1973, Concepts and Methods in Discrete Event Simulation, New York:
John Wiley and Sons.

Goldberg, A., and D. Robson, 1983, Smalltalk-80: The Language and its Implementation,
Reading, MA: Addison-Wesley.

41

Herring, C., January 1990, "ModSim: A New Object-oriented Simulation Language", 1990

SCS Conference on Object Oriented Simulation, pages 55-60.

Hilton, M. L., and J. D. Grimshaw, April 1990, ERIC Manual, RADC-TR-90-84.

Hooper, J. W., April 1986, "Strategy-Related Characteristics of Discrete-Event Languages and
Models", Simulation, vol. 46, no. 4, pages 153-159.

lacobovici, S., and C. Ng, August 1987, "VLSI and System Performance Modeling", IEEE
Micro, pages 59-72.

Jade Simulations International, 1990, Sim++ Programmer Reference Manual, Release 3.0,
Calgary, Canada: Jade Inc.

Kiviat, P. J., 1971, "Simulation Languages," Computer Simulation Experiments With Models
of Economic Systems, (T. H. Naylor, ed.) New York, NY: John Wiley and Sons,
pages 406-489.

Lippman, S. B., 1991, C++ Primer, 2nd editon, Reading, MA: Addison-Wesley.

Lomow, G., and D. Baezner, December 1990, "A Tutorial Introduction to Object-Oriented
Simulation and Sim++," Proceedings of the 1990 Winter Simulation Conference,
New Orleans, pages 149-153.

Schwetman, H. D., December 1990, "Introduction to Process-Oriented Simulation and
CSIM," Proceedings of the 1990 Winter Simulation Conference, New Orleans, pages
154-157.

Scientific and Engineering Software, Inc, April 1989, SES/workbench: Introductory
Overview, Release 1.0, Austin, TX: SES, Inc.

Stroustrup, B., 1991, The C++ Programming Language, 2nd Edition, Reading, MA:
Addison-Wesley.

42

APPENDIX A

MODSIM II CODE

MAIN MODULE Testl; MAIN MODULE Test3a;

FROM UtilMod IMPORT GetCmndLineArg; FROM UtilMod IMPORT GetCmdLineArg;
FROM SimMod IMPORT StartSimulation, SimTime; FROM SimMod IMPORT StartSimulation, SimTime;
FROM Randod IMPORT RandomObj; FROM RandMod IMPORT RandomObj;

TYPE TYPE
Foo - OBJECT Foo - OBJECT

TELL METHOD Bar O); TELL METHOD Bar (IN n INTEGER);
END OBJECT; END OBJECT;

OBJECT Foo; VAR
TELL METHOD Bar (]; f Foo;
BEGIN I, j: INTEGER;
END METHOD; s STRING;

END OBJECT; r Randomobj;

VAR C3JECT Foo;
f : Foo; TELL METHOD Bar (IN n INTEGER);
i, j : INTEGER; BEGIN
s : STRING; n :- n -i;
r : RandoumObj; IF n > 0

WAIT FOR f TO Bar(n)
BEGIN END WAIT;

NEW(f); END IF;
NEW(r); END METHOD;
GetCmdLineArg(l, s); END OBJECT;
i :- STRTOINT(s);
FOR j :- I TO i BEGIN

TELL f TO Bar() IN ASK r UniformReal(0.0, NEW(f);
1000.0); NEW(r);

END FOR; GetCadLineArg(1, s);
StartSimulation); i :- STRTOINT(s);

END MODULE. TELL f TO Bar(i);
StartSimulation);

END MODULE.

MAIN MODULE Test2;

FROM UtilMod IMPORT GetCmdLineArg; MAIN MODULE Test3b;
FROM SimMod IMPORT StartSimulation, SimTime;
FROM RandMod IMPORT RandomObj; FROM UtilMod IMPORT GetCmdLineArg;

FROM SiizNod IMPORT StartSimulation, SimTime;
TYPE FROM RandMod IMPORT RandomObj;

Foo - OBJECT
TELL METHOD Bar (IN n INTEGER); TYPE

END OBJECT; Foo - OBJECT
TELL METHOD Bar (IN n INTEGER);

VAR END OBJECT;
f Foo;
i, j : INTEGER; VAR
s STRING; f : FOO;
r RandoiObj; I, j : INTEGER;

a : STRING;
OBJECT Foo; r : RandomObJ;

TELL METHOD Bar (IN n INTEGER);
BEGIN OBJECT Foo;

n :- n - 1; TELL METHOD Bar (IN n INTEGER);
IF n > 0 BEGIN
TELL f TO Bar(n); WAIT DURATION 1.0 END WAIT;

END IF; n :- n - i;
END METHOD; IF n > 0

END OBJECT; WAIT FOR f TO Bar(n)
END WAIT;

BEGIN END IF;
NEW(f); END METHOD;
NEW(r); END OBJECT;
GetCmdLineArq(1, s);
i :- STRTOINT(s); BEGIN
TELL f TO Bar(i); NEW(f);
StartSimulation (; NEW(r);

END MODULE. GetCmdLineArg(1, s);

43

i :- STRTOINT(s); WAIT DURATION 1.0
TELL f TO Bar(i); END WAIT;
StartSimulationO ; IF J > 0 Interrupt (SELF, "LongDelayLoop");

END MODULE. TELL SELF TO InterruptLoop(J - 1);
END IF;
(OUTPUT ("Interrupter finished");!
END METHOD;

MAIN MODULE Test4; END OBJECT;

FROM UtilMod IMPORT GetCmdLineArg; VAR
FRG4 Reaod IMPORT ResourceObj; f Foo;
FROM Simlod IMPORT StartSimulation, SimTime; Num INTEGER;

Str STRING;
TYPE

BEGIN
CustomerObJ - OBJECT NEW(f);

TELL METHOD Run(IN n INTEGER); GetCmdLineArg(1, Str);
END OBJECT; Num :- STRTOINT(Str);

TELL f TO LongDelayLoop(Num);
VAR TELL f TO InterruptLoop(Num);

StartSimulation O;
Cust : CustomerObJ; END MODULE.
Res : ResourceObj;
I : INTEGER;
Str : STRING;

OBJECT CustomerObj;
TELL METHOD Run(IN n INTEGER); MAIN MODULE Sim;
BEGIN

IF n > 1 FROM SimMod IMPORT StartSimulation, SimTime,
TELL SELF TO Run(n - 1) IN 1.0; Interrupt, Trigger(oj;

END IF; FROM ResMod IMPORT ResourceObJ;
WAIT FOR Res TO Give(SELF,I); FROM RandMod IMPORT RandomObJ;
END WAIT; FROM MathMod IMPORT LN;
WAIT DURATION 1000000.0 FROM UtilMod IMPORT ClockTimeSecs;
END WAIT;
ASK Res TO TakeBack (SELF, I); TYPE

END METHOD; Gender - (Female, Male);
END OBJECT;

CustomerObj - OBJECT; FORWARD;
BEGIN

NEW(Cuat); VIPObj - OBJLCT; FORWARD;
NEW (Res) ;
ASK Res TO Create(1); LineObj - OBJECT (ResourceObj)
GetCmdLineArg(1, Str); serving CustomerObJ;
I :- STRTOINT(Str); canContinue TriggerObj;
TELL Cust TO Run(I); TELL METHOD ServeCust (IN cust
StartSimulation; CustomerObJ);

END MODULE. OVERRIDE
ASK METHOD ObjInit);

END OBJECT;

MAIN MODULE Test5; RestRoom - ResourceObJ;

FRCN UtilMod IMPORT GetCmdLineArg; CustomerObj - OBJECT
FRQE SimSod IMPORT StartSimulation, SimTime, myGender : Gender;
Interrupt; ASK METHOD ObjInit 0;

TELL METHOD GetOnLine 0;

TYPE TELL METHOD VisitFacilities 0;
Foo - OBJECT PRIVATE

TELL METHOD LongDelayLoop (IN I: INTEGER); ASK METHOD FindBestLine 0 LineObj;
TELL METHOD InterruptLoop (IN J: INTEGER); END OBJECT;

END OBJECT;
EndSim - OBJECT

OBJECT Foo; TELL METHOD Stop
END OBJECT;

TELL METHOD LongDelayLoop (IN I: INTEGER);
BEGIN VIPObj - OBJECT (CustomerObj)
(OUTPUT ("LongDelayLoop started");J OVERRIDE
WAIT DURATION 100.0 TELL METHOD GetOnLine 0;
ON INTERRUPT END OBJECT;

(OUTPUT("LonqDelay interrupted"); I
IF I > 0 TELL SELF TO LongDelayLoop(I - 1); CustGeneratorObj - OBJECT

END IF; TELL METHOD GenCustomers O;
END WAIT; END OBJECT;

(OUTPUT ("LongDelayLoop finished");)
END METHOD;

TELL METHOD InterruptLoop (IN J: INTEGER);
BEGIN
(OUTPUT("Interrupter started");)

441

VIPoeneratorObl - OBJECT (CustGeneratorabj) Erlang (meanLinieTolerance,
OVERRIDE

TELL METHOD GenCustomers 0; varianceLineTolerance));
END OBJECT; IF ASK restRoom TO Report~umberPendingoC >

restRoomLineTolerance
MoreRandoeObj -OBJECT (Randomobj) DISPOSE (SELF);

add the Erlang distrubution ITERMINATE;
ASK METHOD Erlang (IN mean, variance ELSE

REAL) :REAL; WAIT FOR restRoom TO Give(SELF, 1)
END OBJECT; END WAIT;

WAIT DURATION ASK random
VARErlang (restRonMeanTime~myGender),

houraToRun, restRoomVarTime (myGender])
meanlnterArriveTime, END WAIT;
meanVPlnterArriveTime, ASK restRoom TO TakeBack (SELF, 1);
meanNatureCallsTime, END IF;
varianceNatureCallsTime, END METHOD;
maanLineTolerance,
varianceLineTolerance, ASK METHOD FindBestLine () Lineobi;
meanServiceTime, VAR
varianceServiceTime :REAL; line, bestLine :LineObi;
k :INTEGER; length, bestLength, i :INTEGER;
numLines :INTEGER; BEGIN
line :LineObi; bestLengqth :- MAX (INTEGER);
aliLines :ARRAY INTEGER OF LineObj; FOR i :- 1 TO nwnLinesrandom :MoreRandomObj; line :- aliLinesfil;
restRooms :ARRAY Gender OF RestRoom; length :- ASK line TO
reatRoomMeanTizne, ReportNumnberPending 0;
restRoonVarTime :ARRAY Gender OF REAL; IF ASK line TO ReportAvailabilityoC 0
custGenerator CustGeneratorObj; length :-length + 1;
vipGenerator VIPGeneratorObj; END IF;
seed :INTEGER; IF length <bestLength
endsim :EndSim; bestLength :-length;

bestLine :- line;
OBJECT CustomerObj; END IF;

ASK METHOD Objlnit 0;END FOR;
BEGIN RETURN bestLine;

myGender :-VAL(Gender, ASK random END METHOD;
Uniformlnt(O, 1)); END OBJECT;

TELL SELF TO GetOnLine;
END METHOD; OBJECT VIPObi;

TELL METHOD GetOnLine 0
TELL METHOD GetOnLine 0;VAR
VAR line :LineObJ;

myLine :Lineobj; oldCust :CustomerObi;
timeTillNatureCalls :REAL; BEGIN

BEGIN line :-allLines[ASK random Uniformlnt (1,
LOOP numLines)];

LOOP oldCust :-ASK line serving;
timeTilINatureCalls :-ASK IF oldCust <> NILOBJ

random IF ISANCESTOR(VIPObj, oldCust)
RETURN;

Erlang (meanNatureCallsTime, END IF;
Interrupt (line, "ServeCust");

varianceNatureCallsTime); ELSE
myLine :-ASK SELF TO WAIT FOR line TO Give(SELF, 1)

Fi ndfleatLine 0;, END WAIT;
WAIT FOR myLine TO END IF;

TimedGive(SELF, 1, timeTillNatureCalls) WAIT FOR line TO ServeCust (SELF)
EXIT; END WAIT;

ON INTERRUPT IF oldCust <> NIWOBJ
WAIT FOR SELF TO WAIT FOR line.canContinue TO Trigger()

VisitFacilities END WAIT;
END WAIT; ELSE

END WAIT; ASK line TO TakeBack(SELF, 1);
END LOOP; END IF;
WAIT FOR myLine TO ServeCust (SELF) DISPOSE (SELF);
END WAIT; END METHOD;
ASK myLine TO TakeBack (SELF, 1); END OBJECT;
EXIT;

END LOOP; OBJECT MoreRandomObj;
DISPOSE (SELF); ASK METHOD Erlang (IN mean, variance REAL)

END METHOD; REAL;
VAR

TELL METHOD VisitFacilities k : INTEGER;
VAR i: INTEGER;

restRoom :RestRoom; prod :REAL;
restRoomLineTolerance :INTEGER; BEGIN

BEGIN k :-ROUND(mean m ean /variance);
restRoom :- reatRooms(myGender);

restRoomLineTolerance :- ROUND (ASK random

45

IF k c - 0 END OBJECT;
OUTPUT (*Bad parameters to Erlang.");
HALT; OBJECT EndSim;

END IF; TELL METHOD Stop)
prod :-1.0; BEGIN
FOR i 1 TO kc HALTO;

prod :- prod ASK SELF UniformReal (0.0, END METHOD;
1.0); END OBJECT;

END FOR;
RETURN -LN(prod) mean /FLOAT(k); BEGIN

END METHOD; (NEW(dt);l
END OBJECT; (TELL di TO TimeOut() IN 1.0;)

NEW(restRooms, Female .. Male);
OBJECT LineObj; NEW (restRooms(Female));

ASK METHOD Objlnit 0;ASK restRooms(Femalel TO Create (4);
BEGIN NEW(restRooms [Hale));

INHERITED Objlnit; ASK restRooms(Mals) TO Create(4);
NEW(canContinue); REW(reatRoorteanTime, Female M. ale);

END METHOD; NEW(restRoomVarTime, Female .. ale);
restRoouzMeanTime(Female) :- 5.0;

TELL METHOD ServeCust (IN cust CustomerObi); restRomkeanTime [Hale) :-3.0;
VAR restRoomVarTime[Female) :-8.0;

avcTime : REAL; restRoomVarTimeCMale) :-6.0;
startTime : REAL; OUTPUT ("MODSIM II Simulation 'Lines and Rest

BEGIN Roams' starting-*);
svcTime :-ASK random OUTPUT("What is the mean customer interarrival

Erlang(meanServicelime, varianceServiceTime); time in minutes?");
LOOP INPUT (meanlnterArriveTime);

startTime :-SimTime 0; 0UTPUT("What is the mean VIP interarrival time in
serving :- cust; minutes?");
IF svcTime <- 0.0 INPUT(meanVPnterArriveTime);

EXIT; OUTPUT(-What is the mean service time in
END IF; minutes?");
WAIT DURATION svcTime INPUT (meanServiceTime);

serving :- NILOBJ; OUTPUT(*What is the variance of the service
EXIT; time?");

ON INTERRUPT INPUT (varianceServiceTime);
svcTime :- svcTime - (SimTime() OUTPUT("What is the mean time in minutes till

-startTims); *Nature Calls'?");
LOOP INPUT (meanNatureCalisTime);

WAIT FOR canContinue TO Fire(0 OUTPUT('What is the variance?");
EXIT; INPUT (varianceNatureCallsTime);

ON INTERRUPT OUTPUT ("What is the mean restroom line length
END WAIT; tolerance?");

END LOOP; INPUT (meanLineTolerance);
END WAIT; DUTPUT(-What is the variance?");

END LOOP; INPUT (varianceLineTolerance);
END METHOD; OUTPUT ("How many lines are there?");

END OBJECT; INPUT (numLines);
OUTPUT ("How many hours should the simulation

OBJECT CustGeneratorObj; run?");
TELL METHOD GenCustomers o; INPUT (hoursToRun);
VAR OUTPUT("Random Seed?");

customer : CustomerObi: INPUT (seed);
waitTime : REAL;

BEGIN OUTPUT("Mean Interarrive Time: "

LOOP meanlnterArriveTime);
waitTime :-ASK random OUTPUT ("Mean VIP Interarrive Time: "

Exponential (meanlnterArriveTime); meanVPlnterArriveTime);
WAIT DURATION waitTime; OUTPUT ("Mean Service Time: *, meanServiceTime);
END WAIT; OUTPUT ("Variance Service Time: "

NEW (customer); varianceServiceTime);
END LOOP; CUTPUT("Mean 'Nature Calls' Time: "

END METHOD; I GenCustomers)meanNatureCallsTime);
END OBJECT; OUTPUT("Variance *Nature Calls' Time: "

varianceNatureCallsTime);
OBJECT VlPGneratorObj; OUTPUT ("Mean line length tolerance: "

TELL METHOD GenCustomers 0; meanLineTolerance);
VAR OUTPUT ("Variance line length tolerance: "

vip :VIPObI;, varianceLineTolerance);
waitTime : REAL; OUTPUT("Niznber of lines: ", numLines);

BEGIN OUTPUT ("Hours to run: *, hoursToRun);
IF meanVPlnterArriveTkme > 0.0 NEW(allLines, 1 .. numLines);

LOOP FOR kc :- 1 TO numLines
waitlime :- ASK random NEWiline);

Exponential (meanVlPlnterArriveTime); ASK line TO Create (1);
WAIT DURATION waitTime; allLines [I) :- line;
END WAIT; END FOR;
NEW (vip); NEW (random);

END LOOP; ASK random TO Set Seed (seed);
END IF; NEW (custGenerator);

END METHOD; I GenCustomers) EW (vipGenerator),

46

NEWendsiau);
TELL custGenrator TO GenCustomors 0;
TELL vipGenerator TO GenCustaners 0;
TELL endxim TO Stop IN 60.0 * hoursToRun;
StartSimulation;

END MOULE.

47

APPENDIX B

SESlworkbench CODE

On the following three pages, we have reproduces screen images of the directed graphs that
represent the top level of the benchmarks in SESlworkbench. Given the previous descriptions
of the benchmarks, these graphs should provide enough detail to understand how the
benchmarks were realized in the SES tool.

49

S/desm 2. 0 e

begin node vait-here end-node

SSES/deuim 2.0 !!st2
Index Iwhat Ilo 'H I Pewm

phase contr 1

bepn node 1.01?r forkalJoi al end node

Fiue2. ES/wIrkbnch Graph
t owl iii;ll II150imr

test4

token~pool

begin node grbon rldjnode

ftSES/desig 2-0 tests
Index I hat IHov prial

sLoop sPause intz

Figure 11. (continued)

51

4 .nASES/desig 2.0 im,
'~ UInde What I ow ac potty nod

Referencet in-ru steuetstal

nattusre eayat re nr t raptyecnu

:Sdtimer s2.0

Reeeerecce decrequen

set~III t.

alloc teller rei~t
t avail

t-not avail
VIP Oen vip sink

Figure 11. (concluded)

52

APPENDIX C

Sim++ CODE

IIIIIII Testl.c -- testl (1 queue) STMENTITY(source);
#include <sim++ .h>
#include <stdlib.h> / id for entity instantiation

sire-entityid sourceid;
II message types
anum (INIT, G0, S DP);

If create and initialize entities
II receiver entity class void sieinitialize(int, char *argv[], int, char*[])
class foo : public sirmentity

public: int n - atoi(argv[l]);
foo(aim-event &ev); char *foo-name = "foo-entityl;
void body(); char *source-name = *source.entity';
void barf{;

} ; II create one instance of source class with ID
source_id and name

// source.name
foo: :foo(sim-event &ev) source.id - sim-create(°source ,sourcename,

INIT, SI!CFUT(int, n));
I/ initialize the entity

// create one instance of foo class with ID
fooid and name fooname

void foo::body() foo_.id = simecreate("foo-, foo-name, INIT);

sihm-event ev;
siaLwait(ev);
while (ev.type() I- STOP) C
bar 0;
siaLwait(ev), /////1/I testlb.c -- test 1 (n queues)

f)IIIIII note: must subtract the results
f/f/Ill//f/ testlc in order to remove the
f/////f/ the overhead of creating

void foo::bar() { ////1// n entities
#include <sim++.h>
#include <stdlib.h>
#define MX_ENTITIES 10000

i instantiate entity class
SIIENTITY(foo); II message types

enum (INIT, G0, STOP);
If id for entity instantiation
sinfLentityid fooid; I/ receiver entity class

class foo : public sinLeentity
// source entity class public:
class source : public isentity { foo(sim-Levent &ev);

public: void bodyo;
source(sim_event &ev); void baro;
void body() ;]

private:
int n;

S; f0oo::foo(aim-event &ev)

source: :source(sim_event &ev) // initialize the entity

// get the number of iterations
SIGrrT(int, n, ev); void foo::body()I C

sinLevent ev;
void source: :body() simait(ev);

while (ev.typeo) = STOP
bar{;

// Put n events on queue. sim-wait(ev);
int seed - 12345;
double time;
while (n--)

{ void foo:.baro)
Lime - aiLuniform(1.0, 1000.0, seed);

sim_schedule(fooid, time, GO);

II instantiate entity class
II Schedule the stopping event SIMENTITY(foo);
saltschedule(foo-id, 1001.0, STOP);

II id for entity instantiation
sim-entity-id fooid(MAXJENT1TIES];

i instantiate entity class

53

struct sizes (Void bodyo;
mt mn; void baro;
int n;

IIsource entity class foo::foo(sim event &ev)
class source : public Sim-entityII

public: I nitialize the entity
source(S im-event &ev);
void bodyo,

private: void foo::body()

sizessize;aim event ev;
simwait(ev);

source::sourceC sim event &ev) while (ev.type(oI STOP
I baro;

// get the numbder of iterations aim_wait(ev);
SIN GET(sizes, size, evl;I

int seed - 12345; void foo::bar()

void source: :body()

/instantiate entity class
//Put n events on queue SIM £tTITY(foo);

double time;
for (mt n-events - size.n; n_events > 0; 1/id for entity instantiation

n _events--) (aim-entity_id foo-id[MAXENTITIESI;

an tfor (mt in-entities - size.in; m-entities > 0;sorentycls

tesime -aim uniformn(1.0, 1000.0, seed); class source : public aim entity
aim-schedule(froo-idlm_entities], time, GO); public:

source(aim event &ev);
void body 07

source::aource(aim event &ev)
//Instantiate entity class

SIM-ENTITY (source);

// id for entity instantiation void source::body()
aim entity id sourceid;

Icreate and initialize entities //instantiate entity class
void sim-initialize(int, char -argvfl, int, char*[]) SIMENTITY(source);

sizes size; IIid for entity instantiation
size.m - atoi(argv~lfl; aim-entityid source-id;
size.n - atoi(argv[21);
char foo name(101;
char *source-name - "source-entity"; IIcreate and initialize entities

void aim-initialize(int, char *argv(], int, char*[])
Icreate one instance of source class with nameI

source entity mnt mn - atoi(argv~ll);
aim create("source",source name, INIT, int n - atoi(argv[2j);

SINPUT1'sizes, size)); char foo-namello;
char *source-name - "source-entity";

IIcreate "in" Instances of foo class with name
foo "i" // create one instance of source class with name

for (Int I - 1; 1 <- size.m; i++) I source _entity
aprintf(foo name, "foo W", i); aim-create("source",source_name, INIT);

foo-d~i l-im-reae7(Ifo", oo-ame INT);// create "in" instances of foo class with name

for (n -1 -";I+

I//IIteatlc.c -- testl (n queues) sprintf(foo name, -foo td-, i);
I//IInote: schedules no events, fooId(iI - asim-createI "fool, foo-name, INIT);
I///Iused to measure the overhead
/////of creating n entities

#include <sim++.h>
#Include <stdlib.h> I//Itest2.c
#define MhX_£NTITIES 10000 #include <sim++.h>

#include <stdlib.h>
//message types

enum I INIT, GO, STOP); //message types
enwn (INIT, GO, STOP);

Ireceiver entity class
class foo : public aim entity I //id for entity instantiation

public: sin-entity_id foo-id;
foo(aim-event Aev);

54

/receiver entity class bar(n);
class foo public sim-entity j

public:
foo(aim-event Lev);
void body)); //instantiate entity class

private: SIM-ENTITY (foo);
int n;

Icreate and initialize entities
void aim-initialize) i, char *arqvu), int, char*[])

foo::foo(aim-event Lev) mnt n - atoi(argvfll);

// initialize the entity
ca fonm foett-

SIM GET(int, n, ev); // create one instance of class foo id ID faa-id
and name f oo name

foo-id Z aim-create) "foo", faa_name, INIT,
void foo: :bady() SIMPUT) int, n));

aim event ev;
whiTe (--n

// schedule an event for yourself
sim -schedule~toc id, 0.0, GO); I/Itest3b.c

// and wait for it #include <sim++.h>
aim-wait (ev); #include <stdlib.h>

/message types
enian j INIT, GO, STOP);

/instantiate entity class
SIllENTITY~foo); //id for entity instantiation

aim-entity_id faa_id;
Icreate and initialize entities

void aim -Initialize) mnt argc, char *argv[], int, //receiver entity class
char* [)) class foo : public aim-entity

public:
int n - atoi(argv[11); faa) aim event Lev);
char *foo-name - "faa-entity"; void body));

void bar lint);
IIcreate one instance of class faa with ID private:

foo-id and name faa_name int n;
foo -id - aim -create(C "faa", faa-name, INIT,

SIM-UT(nt,)),-foo::foo(aim-event Lev)

SIMGET) int, n, ev);
I/IItest3a.c

#include <sim++.h>
#include <stdlib.h> void too: :body()

IImessage types bar (n);
enum (INIT, GO, STOP);

// id for entity instantiation void foo::bar(int n)
aim-entityid too_id; aim event ev;

if (--n > 0) 1
/receiver entity class aim -time new-time s im-hold) 1.0, ev);

class faa : public sim-entity Ibarln);*
public:

foo) aim-event 5ev);
void body));
void barlint); IIinstantiate entity class

private: SINENTITY (faa);
mnt n;

I; IIcreate and initialize entities
void aim-initialize) int, char *argvlJ, int, char*[])

foo::foo) aim-event Lev)
mnt n - atoi~argv[lfl;

SIMGET) mnt, n, ev); char *too_name - "foo_entity";

/create one instance of class faa id ID faa_id
void foo::body)) and name faa name

foo id a im -create) "faa", faa-name, INIT,
bar (n); SINPUT(int, n)),,

void foo::bar(int n) I
/*simyrintf ("bar: %d \n", n);*/ /////////////I//resourcea.h
If (--n - 0) 1 #include <sim++.h>

aim event ev;
sim-time new-time - aim-hold) 1.0, cv);

else

55

Iresource entity superclass
class resources : public sim-entityI

public: return event-received;
// message types
anwri I IlflT, GIVE, GIVE_-ACK, TAKE_BACK, DESTROY);
// initialize an instance Sim event
resources) aim-event Lev); resources::next-take-back ordestroy(sim-entity_id
// siumple behaviour from)
void bodyo);I
aim event next give_or_destroy 0; conat aim type5p take-back-or-destroyy C TAKEBACK,
aim~vent next_take-back-or-destroylimentityid DESTROY);

from); simevent. event-received;

aim wait for) take-back-or-destroyp,
Icustomer entity class event receiVed);

class consumers i if (event-received.type() -- TAKESACK C
public: if C event received.scheduled by() !- from)I

void acquire-resource(simentityid sim error CEntity other than consumer has
&the -resource); given back resource %s \n",

void give-back-resource) sim entity id aim-name0);
at he-resource);

void destroy resource(aim entity id
&the-resource); return event-received;

//I/I/////////////consumers .c
#include "resources. h; void resources: :bodyo(

void consumers::acquire_resource) aim-entity id aim event next event;
&the-resource) aim -entity id riesource requestor;

conat aim -typeyp got_it) resources: :GIVEACK); next event - next give or destroy));
aim event ev; whili (next event.type() Z- GIVE
aim-event-id event_id; //DESTROY iesults in termination

event-id - aim-schedule) the-resource, 0.0, resource requestor - next event.scheduled_by 0;
resources: :GIVE); // give The resource to t~ie requestor

aim-wait_for) got_it, ev); sim-schedule) resource-requestor, 0.0,
C GIVE-ACK);

// wait for a request to give it back from the
void consumers::give_back_resource) aim entity id requestor
Ithe-resource) next event

f ~next take Sack-or destroy (resource 'requestor);
aim event ev; if (next event type)) !- DESTROY)I
sim-eventid event_id - aim-schedule) the_resource, next-event - next-give-or-destroy));

0.0,
resources: :TAKESACK);

void consumers::destroy_resource) sim-entity id
&the_resource)

I //////test4.c
aim event-id event_id - aim-schedule) the-resource, #include "/home/vtg/sim++/reussble/resources.h";

0.0, # Include <stdlib.h>;
resources: :DESTROY);

// message types
////I////////resources.c enua I INIT, GO, STOP);

#include "resources.h";
/instantiate the class

resources::resources) aim Ievent Lev) SIMEnITY~resources);
Ino need to initialize further

// handle for the one instance
Sim entity id resource-id;

sim-event resourcea::next_give-or-destroy))

conat aim typeyp give or destroy_PC GIVE, DESTROY); Ifcustomer entity class
aim event-event receiv ed;' class customer : public aim entity, public consumersC
// Fry to select a deferred event that matches sim time start ingL delay;,
mnt bool - im -select) SIM_ANY, event_received); public:
if (bool -- 0) 1 customer(aim event Lev);

// no deferred events, wait for next GIVE or void body));
DESTROY

aim wait for) give or destroy_p,
event_received); cuatomer::customer(aim-event Lev)

else I // check that deferred event is a GIVE or IIinitialize the entity
DESTROY SIMGET) aim-time, starting delay, ev);

if C(event received.type(0 GIVE) 44
(event received.type()o DESTROY)))

aim erriir("Unexpected event type: %d received void customer::bodyC)
in resource Ts",I

event-received.typeo, aim-name); aim-event ev;

56

aim hold for(starting delay, SIM NONE, ev);
acquire Fesource (resource id);
aim hola for(1000000.0, SM NONE, ev); // instantiate entity class
givibacf _resource (resourceid); SIM ENTITY (foo);

// create and initialize entities
void siminitialize(int, char *argvC], int, char*[])

i instantiate entity class
SIMENTITY (customer); int n - atoi(argv[lj);

char *fooname - "fooentity";

// create and initialize entities // create one instance of class foo id ID foo-id
void aim_initialize(int, char *argv[}, int, char**) and name foo name

foo id Z aim create("foo", fooname, INIT,
int n - atoi(argv[lJ); SIMPUT(-int, n)),
char *res name - "resource-entity";
char *customername - "customerentity";

// create one instance of resource class with ID
resource id and name

// resource name
resource id-- sim create ("resources",resname,

resources: :INIT);

// create n instances of customer class with name
customer %i

for-(int i - 1; 1 <- n; i++) I
sprintf(customer name, "customer_%d", I);
Sim time start delay - 1;
sim-create("customer", customer name, INIT,

SIMPUT(sim_time, start-deliy));

IIIIII testS.c

#include <sim++.h>
#include <stdlib.h>

// message types
enm { INIT, INTERRUPT, STOP);

/I id for entity instantiation
sim entity id foo id;

// receiver entity class
class foo : public sim-entity j

public:
foo(aim event 5ev);
void bodfl();
void tripper);
void trippee();

private:
int trips;

I;

foo::foo(simevent &ev)

SIMGET(int, trips, ev);

void foo::body)

trippee();
I

void foo::tripper)
simschedule(simcurrent), 1.0, INTERRUPT);

I

void foo::trippee)

const sim type_p interrupt) INTERRUPT);
aim event ev;
white (0 < trips--)

// set the time out timer
trippero;
// wait for a long time (anticipating interrupt)
aim_hold_for) 100.0, interrupt, ev);

57

Sim++ BANK SIMULATION DESCRIPTION

The bank simulation in Sim++ is the most complex of our benchmarks, and we include he
some discuss before we list the source code. Figure 12 summarizes the event flows between
entities in the simulation. Event flows are labelled with corresponding event identifiers. The
termination of event flows are labelled with the method(s) invoked by the receiving entity's
body method. The summary entity, the initialization event flows, and the report event flows
are not shown in the figure. Not all methods are shown.

ustomerGenerator Tle~tt

CUSTOMER_EV

ServiceVip or
TurnAwayVip

WaitingCusomer
CHECKN E Line Entity 14A ll VIP EV

ustomerGeneratorEV
or

Rsrontt)BestLine WaitingCustomer

CustomerTimeout CUSTOMEREV

TIMEOUT_AV

RestroomEntity

Handle Unoccupy

UNOCCUPY._EV

Figure 12. Major Entities and Event Flows

58

Six entity classes are used in the program:

. CustomerGenerator. An instance of this class generated customers with a negative
exponential interarrival time. The customer's gender and ID were assigned at this
time. The customer is sent to the line determined by the customer's BestLine method.

2. VpGenerator: An instance of this class generated VIPs with a negative exponential
interarrival time. The VIP's ID was assigned and the VIP was sent to a randomly-
determined teller.

3. LineEntity: One instance of this class was associated with each teller. This entity
class modeled the line in which the customers waited until a teller was busy or until
their "restroom tolerance" was exceeded. In addition to the required constructor and
body methods, the following additional methods were defined:

a) PendingNumber: This method determined the line length.

b) CheckLineLength: This method replied to a query for the length of a line.

c) WaitingCustomer: This method handled the arrival of a customer on line. If the
line were empty and the teller were free, the customer would be sent to the teller
for service. Otherwise, the customer would be enqueued and the customer's
ArrivedOnLine method would be invoked to schedule a timeout for its restroom
break.

d) CustomerTimeout: This method handled the occurrence of a restroom time for a
customer. The customer was dequeued and sent to the restroom appropriate to
the customer's gender.

e) TellerBusy: This method handled an event that indicated that a line's teller was
busy.

f) TellerFree: Conversely, this method handled the event that indicated that a
line's teller was free. If any customers were in line, the head of the line was
removed, the customer's LeavingLine method was invoked in order to cancel
the corresponding restroom timeout event, and the customer was sent to the
line.

g) UpdateStats: This method was invoked when the length of the line was
changed so that the time-averaged line length could be accumulated.

h) WriteReport: This method reported the accumulated line length statistics to the
summary entity for consolidation and printing.

59

4. TellerEntity: Instances of this class were created to model the bank's tellers. In
addition to the constructor and body methods, five methods were defined:

a) GetNextEvent. This method informs the corresponding line that the teller is free
and waits for the arrival of a customer or VIP.

b) ServiceCustomer: This method determines the service time of a customer
according to an Erlang distribution and attempts to service the customer for that
time. This service may be interrupted by the arrival of a VIP, at which time the
ServiceVip method is invoked. After return from this method, the teller
attempts to give the customer the remaining service time that it needs. Service
time data for the customers is accumulated.

c) ServiceVip: This method determines the service time required by a VIP
according to an Erlang distribution and attempts to service the VIP for that time.
If interrupted by the arrival of another VIP, the TurnAwayVip method is
invoked. After interruption, service is resumed. Service time statistics are
accumulated.

d) TurnAwayVip: This method refuses service to VIPs that attempt to interrupt the
service of othcr VIPs. A count of the number of VIPs turned away is
accumulated.

e) WriteReport. This method reports the accumulated statistics to the summary
entity.

5. RestroomEntity: An instance of the restroom entity class modeled the restroom for
each gender. Each restroom is a single-queue multi-server. The methods defined in
addition to the constructor and body methods are:

a) PendingNumber: This method was reported the line length.

b) HandleRestroom: This method handled the arrival of a customer. If there was
no queue and a stall was free, the stall would be marked busy and the service
time for the customer would be determined according to an Erlang distribution.
A corresponding completion event would be scheduled. Otherwise, the line
length would be checked against the customer's line length tolerance. If this
tolerance was exceeded, the customer would exit the bank. A count of these
customers was accumulated. If the tolerance were not exceeded, the customer
would be enqueued.

c) HandleUnoccupy: This method handled the completion event for a customer.
The customer is sent to the line entity with the best line length as determined by
the customer's BestLine method. The corresponding stall is marked free. If

60

there are customers enqueued, the head of the queue is removed, the stall is
marked occupied, and a completion event is scheduled according the service
time determined by an Erlang distribution.

d) UpdateStats: This method was called when the line length changed in order to
accumulate the line length averaged over time.

e) WriteReport. This method reports the accumulated statistics to the summary
entity.

6. Sumwmary: One instance of this entity class was used to consolidate and print the

statistical information for the simulation run.

Twelve event types were defined:

0. INIT EV. This identifier was used for all "initialization events" sent to each entity
during the Sm-- initialization phase. "Init" object classes were defined for each of
the entity classes that contained the data values necessary to identify or customize
each entity instance. Objects of the appropriate "init" class were included in each
event sent by the siminitialize method to each created entity.

1. CHECKLINEEV. This event requested that the receiving line entity report its line
length to the sending generator entity. The body of these events were null.

2. LINELENGTHEV. In response, a line entity would include an int value in an
event with this identifier.

3. CUSTOMER EV. Customers were sent between entities in events with this
identifier. The body of these events contained an instance of the CustID class.

4. TIMEOUT_EV. When arriving on line, a customer would send an event with this
identifier to the corresponding line entity that would arrive at the entity if the
customer's "restroom tolerance" were exceeded. The body of these events contained
a copy of the CustID generating the event.

5. VIP_EV. The arrival of a VIP was indicated by the receipt of an event with this
identifier. The body of the event would contain an object of the VipID class.

6. UNOCCUPY_ EV. The RestroomEntity entities scheduled events with this identifier
to indicate the time when service for a customer would be completed. The bodies of
these events contained the customer objects.

7. BUSY_ EV. The TellerEntity entities sent events with this identifier to their
corresponding LineEntty entities to indicate that they were busy servicing a customer

61

or a VIP. This event was necessary because the arrival of VIP at an otherwise free
teller should block the normal customer from arriving. The body of these events
were empty.

8. FREEEV. Conversely, this event indicates to a LineEntity that the corresponding
TellerEntity is free and that the next customer, when available, should be sent to the
teller.

9. REPORT El'. Events with this identifier were used by the Summary entity to
request statistics from the other entities.

10. REPORT REPLY. The responses were returned to the Summary entity in events
with this identifier. These responses contained objects of classes associated with the
entity responding.

11. LAST_El. An event with this identifier was sent by each generator to indicate that
the simulation end time was exceeded and that the summary statistics should be
collected and printed.

Several C++ classes were developed that were not Sim++ entity classes:

1. CusdD: This class carried that data associated with each customer. It was carried as
the body in several types of events. Other than a constructor, it has methods:

a) BestLine: This method determines the line with the shortest length.

b) Arrived On Line: This method determines the customer's restroom tolerance
and schedules a TIMEOUTEV event.

c) LeavingLine: This method cancels the TIMEOUTEV event scheduled when
the customer arrived.

d) ServiceStarted: This method saves the start of service by the teller for later
statistics.

2. VipID: This class carries the data associated with the VIPs and was carried in the
body of events with the VIPEV identifier. The constructor was the only method
defined.

3. my tally: This class was a modification of the Sim++-provided class tally. It added
an operator+= method that efficiently consolidates the statistics gathered by two
instances.

62

Sim++ BANK SIMULATION CODE

I//Ibank simulation public:
int line;
mnt id;
ViPIO (line =0; id =0, 1

////bank.h
linclude <.in++ .h>
Bifndef SMIEJI #endif
#def ine BANK.I

coast. NAX-LINLEN - 10000, l/ generator.h
coast HAXJJLNES - 20, #include 'bank.h*
coast KLMMW . 20,
coast LEVEL1 - 0,
coast HIILCNO - 100; I CustomerSource object declaration

class CustomerGeneratorlnit
anum Gender (Female, Male);
anum TellerState (Free, Busy), public:

int gander-seed;
swanI INt double arrivalrate;

CI4BCKLINE.J&V, mt arrival-s.eed;
LINLENWlfEV.
CUSTONWRV,
TINMWPBV class CustomerGenerator : public SiM..satitY
VIP-Nv,
UN0CCUPY...EV sim-randint..obj gendergenerator;
BUSYJV, simnjegexp..obj interarrival-time-gonerator;
FREE-W, public:
REFORT...BV, CustomerGenerator (aim-.event 460,
REPOfRTJEPLY, void bodyo;)

LASTJV)
SflLFEflTY(CustaorGenerator),

/global parameters // VipSource object declaration
class VipGneratorlnit

extern double hours.to-runi
exter?, mt mlines, public:
exctern mnt ntmtrests, mnt line..seed,

double arrival-rate;
extern simenstity-id 1 ine-id (4AJL1NS.l); int arrival~seed;
extern siz..antity..id rest..id(2J,
extern sim..entity-id teller-.id (MAX-LINE+l1
ectorn ainm-eatity-id cust-a-id; class VipGenerator : public sim-entitY
extern aim-entity-id vip-g.id,
extern eim-entity-id summary..id; aima.randintobj line-generatori

sim-.negexp..obj interarrival-time-generator;
mnt line.Jangth[HLXJANE9+lJ, mnt vip-generated;
*endi f public:

VipGenerator (sim-event &ew);
void bodyo;

I/Ifcustid-h
*i fadef CUMTD-H SIJ121ITY(VipGenerator),
#define CUSTID-H
#include *bank.h*

#include *bank.h"
IfCustcmer id. object class finclude *custid.h*

class CustlD #include mytally .h-

.im.event..id tinmeot.event, I Line object initialization parameters
public: class LineIiiit
Gander gander;
int line, id, toilet; public:
sim,_time on..queb., service-satart; int ID;
CustIDI) (line - 0; id - 0, toilet =0, oa...queue a imearlang-obj *timeout...eerator;

0: uorvice..start. - 0:)
int DeetLineO:;
void Arrived-on-Line(sia~erlang -obJ Line object stats class

*t imeoutgaenerator); class LineStats
void Leaving~necO,
void ServiceJ-Startedfl, public-

.im...accum cust.onlime,
double last-owattime,

S1 " DCLARX-LIST (CustID); my-.tally cust.waiting.time;

class VipID

63

// Line object entity declaration public:
class LineEntity : public sim entity Rest roomEnt ity (s im-event Lev);

void bodyo;
int ID; int PendingNumber 0;
TellerState status; void HandleRastroomlsim event Lev);
CustID head -queue; void HandleUnoccupy(sim--event. Lev);
LineStits stats; void UpditeStatsoi;
Sim erlangobj 'timeout generator; void WriteReport (I;

public: I
LineEntity(sim -event Lev); SIMENTITY (RestroomEntity);
void body();
int PendingNumbero;
void CheckLineLength (sim ent ity id &requester);
void WaitingCustomer (CustID &customer); I//Isunsary.h
void CustanerTimeout(CustID &customer); #include "bank.h"
void TellerBusy 0;
void TellerFree 0; /1Sulmmary oblect declaration
void UpdateStats)); class Suimmary : public sim-entity
void WriteReport 0;

1; imt total_report;
SIN ENTITY (LineEntity); public:

Suimmary (aim -event&);
void bodyfl;

I///Imy tally.h SIMENTITY (Suknary);
#include <sim++ .h>
*ifndef NY TALLY H
#define NYTALLYH I///fteller.h

#include *bank.h*
class my -tally : public Sim tabulate * include Icustid.h-
double Sum, Sumsq, Mn, Naix; #include "my tally.h"

public:
my-tally 0; IITeller Initialization parameters
my tallylconst char -title); class Tellerlnit
void reset 0 ;I
void update (double v); public:
void may tally::operator+-(my_ tally tally); int ID;
int obs?() conat J return sim-tabulate::obs 0; I im-erlang-obi *customer service-generator;
double avg() conat; sim-er lang-obj *vip _servlice enerator;
double std-dev)) conat; I
double min() conat;
double saaC) const; IITeller Stats object
const char -title() const Jreturn class TellerStats

Sim tabulate: :title0);II
v"3id reportoC conat; public:
void freport(const. aim_file_id afile) conat; int cust-interrupts;

;int. vip turnaway;
my_ tally customer service-t'.me;

#endif my tally VIP servIce time;
TeilerStats(T I cu ,tinterrupts -0; vip _turnaway

0;)
I/IIfrestroom.h C

#include "bank.h"
#include "custid.h' I Teller object entity declaration

class TellerEntity : public aim-entity
//Reatroom lnitializa:ion object
class RestroocIlnit mnt ID;

aim--erlang_obj 'customer-service_generator;
public: Sim erlang obj '* ,p_service generator;

Gender gender; TelierStati stats;
aim erlang-obj 'restroom service generator; public:
aim-erlang-obi 'restroom tolerance generator; TellerEntity(sim-event Lev);

I;void body));
void GetNextEvent (aim-event Lev);

IfRes,-o"'sn stats object void ServiceCustomer (CustID customer);
class RestroomStats void ServiceVip(VipID VIP);

void TurnhwayVip(VipID VIP);
public: void WriteReport 0;
mnt customers, cust_walkaway; I

a im-accum line length; SINENTITY (TellerEntity);
sim-time last-event-time:

IRestroom object entity declaration f//fbank.c
class RestroomEntity : public sim entity #include <stdlib.h>

#include "bank.h"
Gender gender; #include "generstor.h"
CustID head 'cust list; #include "line.h"
int occupy[NAXLIRES+l1; *include Irestroom.h.
aim-erlang obj 'service_generator; #include "teller.h-
aim erlangobj 'toleranc-e_generator;
RestroomStats stats;

64

// configuration parameters of the bank // customer's waiting time on a line before leaving
sim time hours to run; for restroom
int numllnes; // and restroom tolerance
mnt numrests; sscanf(datav(31, "%lg %d %d %lg %d %d", &tc_mean,

&tc-sample, >c seed,
/entity id for all objects airt mean, &rt_sample, Igrt_seed);

sim entity id lineid[MAXLINES+l(; restroSm-timeout generator -
sim-entity-id rest id(21;- sim-erlang obj("Restroom timeout",
sim-entity id teller id[MAXLINES+lj; _tc mean, tc sample, gtc seed);
sim-entity id custgid; restroom-tolerance generator
sim entity id vip gid; sim-erlang obi ("Female tolerance*,
sim-entity-id suimnary_id; rt-mean, rtsample, grt seed);

// the commnon random number generators IIline seed and gender seed for their randint
sim --erlang-obj restroom -'timeout -generator; function
sim erl ang obj restroomr servicegenerator[2); sscanf(datav[4], "%d %d", agline_seed,
sim -erlang-obj rest room-t ol era nce__ge nerat or; //shared aiggender-seed);
by Both geniders
sim -erlang-obj customer service generator; IInumber of lines in the bank, number of toilers in
sim-erl ang-obj vip_servTce_generator; each restroom

// and number of hour to run the simulation
double cust_arrv_rate; sscanf(datav(51, "%d %d %lg", anumlines, anurmrests,
int gcust seed; &hours_to_run);
double vip arrv rate;
mnt gvip seedl; sim traceCLEVEL, "initalizing all input
int gline -seed; parameters\n");
int ggender seed;

void read data file (char* datav(])

double tc -mean; void sim-initialize(int, char -[I, int, char* datav(J)
mnt tc_sample;
mnt gtc seed; char line-name[20), teller-name(201, name[20(;
double rt imea n;
int rtsample; read-data_file (datav);
int grt seed;
double rr mean[21; sim trace(LEVEL1, "creating line and restroom
mnt rr-sample[21; entitiles\nll);
mnt grrseed[2(;
double cust_service -mean; for (mnt i-1; i<=: :numlines; i++)
int cust-service-sample;
mnt gcust _service seed; sprintf (line name, "line -entity_%d", i);
double yip service mean; Linelnit line imit info;
int yip service-Sample; line mnit infoi.ID ;-1
int gvip service_seed; line-init-info.timeout generator -

_ restrooi timeout_generator;
Ithe randomn number parameters read from the inputs ::line -id[iJ - sim-create("LineEntity*, line name,
/customer and vip arrival rates and their seeds INITEV,

sscanf(datav[OI, "%lg %d %lg %d", Lcust _arrv_rate, SINPUT(Linelnit,
&gcust seea, line_mnit_info));

Lviparrvrate &gvp~sed);sprintf (teller name, "teller entity_ %d", i);
Icustomer and vip service times (mean, sample and Tellerlnit teller mnit info;-

seed) teller mnit info.ID -
sscanf(datav(lJ, "%lq %d %d %lg %d *d", teller imit info. customer-service generator=

acust-service mean, &customer service-generator;
_ cust service-sample, &qcust service-seed, teller-mit-info.vip-service generator

avip_service mean, &vip service_generator;
avip service_sample, &gvip service_seed); ::teller_ id~i(- sim_create("TellerEntity",

customer service generator - teller-name, INIT_EV,
sim -erlang obj("Customer Service Time", SINPUT (Tellerlnit,

cust _service mean, cust_service-sample, teller-Imit_info));
gcust _ser~vice-seed) ;I

vip service generator -simerlang obj("VIP Service
Time", for (Gender j - Female; j 4- Male; J++)I

vip service mean, vip-service sample, sprintf (name, "restroom entity_%d", J);
gvip-service-seeid); Restroomlnit restroom m iit_info;

restroom init-info.gender - J
Icustomers time spent in restroom (mean, sample restroom-init info.restroom service*generator

and seed) &restroom service generator [j)
sscanf(datav(21, "%lg %d %d %lg %d %d", &rr mean(O], restroom mnit-info.restroom-tolerance generator-

&rrsample(O), igrrseed[O), arr-mean[I), arestroom-tolerance generator;
&rr sample(l), &grrseed(l)); ::rest_idj] - sim_create("RestroomEntity*, name,

restroomn -service generator[O) - INITEV,
sim -erlang obj("Feffiale Service", SINPUT (Restroomlnit,

rrm ' Tr.IO)[, rrsample[O1, grrseed(Ol); rest room_mnit-info))
restroor- rvicegenerator(l - sim-erlanqobj("Nale I

Service",
rr_ meanfll, rr-sample(l], grrseed~li(; CustomerGeneratorlnit custgen_mnit;

custgen_init.gender seed -ggender seed;
custgen -init.arrival -rate -cust arrv_rate;
custgen init .arrival-seed - cust seed;

65

cust g id - sim create("CustomerGenerator", CustomerGeneratorlnit init info;
*customer_generator", INIT EV, SIM GET(CustoierGeneratoriiit, ini info, ev);

SINPUT (CustomerGeneratorlnit, geniaer generator - sim_randint_obi ("1Customer
custgeninit)); Gender", 0, 1,

VipGeneratorInit vipgeninit; init info.gender-seed);
vipgen -init.line_seed - gline -seed; interarrival_time_generator-
vipgen -init.arrival -rate - vip arrv rate; sim negexp obj("Customer Interarrival",
vipgen init.arrival seed - gvipseeil; iit-fnfo.arrival_rate, initinfo.arrival_seed);
vip g Id - sim crea~e("VipGenerator",
"vp enerator", INITEV

SIN -PUT (VipGeneratorlnit, void CustomerGenerator: :bodyo(
vipgeninit));I

mnt total cust - 0;
aummary-id - sim-Create("Summary*, "summary", sim event ev;

INIT_-EV); sim time interarrival-time;
CustID tag;

while (sim -clock() <- :hours-to-run*6O)I
totalCust ++;
sim treace(LEVEL1, "Generating customer 9: %d\n",

f//Icustid.c total_cUst);
#include "custid.h- tag.gender - (Gender) gender generator.sanple 0;

tag.line - tag.BestLineo;
int CustID: :BestLineo(tag.id - total cuat;

I Sim-schedule(::-line id~tag.linel, 0.0,
mnt bestline; CUST0MFR-EV, SIN_PUT(CustID, tag));
int bestlen - MAXLINELEN;

interarrival-time -
for~int line - 1; line e-:: numlines; line++) {interarrival time generator.sampleo;

if (line length~linel -- 0) Jsim hold-for (interarrival time, SIM-NONE, ev);
bestline - line;
break;

//Indicate to summary that no more customers will
if (line length[linel < bestlen)i arrive

bestlinie =line; sim schedule(::susnary_id, 0.0, LASTEV,
bestlen =line-length~lmne); Sim -PUT~int,total_cust));

I)I

return bestline;

**VipCustomerGenerator object implementation
void CustID::Arrived-onLine (sim-erlangopbi
*timeout_generator)

VipGenerator: :VipGenerator)sim-event Lev)
*ifdef INSTRUMENTED

if (on queue -- 0.0) sim trece(LEVELl, "entering vip constructor\n");
on queue - aim-clock)); VipdeneratorInit mnit info;

* endlif SIMGETCVipGeneratorInit, mnit info, ev);
line generator - sim-randint-obj ("VIP Line", 1,

double timeout. - timeout generator->sampleo; numlines,
timeout event - aim-sche'dule(sim-current)),

timeout, TIMEOUT EV, mnit info.line seed);
SINPUT(CustID, -this)); Interarrival -time_generator - aim negexp obj("VIP

Interarrivel",
mnit-info.arrival_rate, Init_info.arrival_seed);

void CustID::LeavingLine))

a im-cancel (timeout_event); void VipGenerator: :body 0

int total vip - 0;
void CustID::ServiceStarted)) VipID vip;

aim event ev;
* ifdef INSTRUMENTED sim-time interarrival-time;

if) service start =- 0.0)
service start - aim-clock)); interarrival time -

* endif interarrival -time generator.aample));
aim -hold for~in~erarrival_time, SIM NONE, ev),
whife (aim clock)) < ::hours_to_rii_*60)

total vip++;
I/I/Igenerator.c aim trace(LEVELl, "Generating VIP customer

#include 'generator.h" #%d\n",total -vip);
#include "custid.h" vip.line - line,,generator.sampleoI;

vip.id - total- vip;
1' im schedule(:.teller id[vip.line), 0.0, VIPEV,

CustomerGenerator object entity implementation SIN PUT(VipID, vip));

interarrival time
CustomerGenerator::CustomerGenerator (aim_event Lev) interarrival -time generator.sampie));

aim-hold-for(interarrival-time, SIMNONE, ev);
aim trace(LEVEL1, "Initializing customer

generatoir\n");

66

//indicate to sumary that no more customers will if ((!quoue-emptyO) 4& (status -- Free))
arrive return (queue->cardinal());
simschedule(::sumuary id, 0.0, LAST_LV, else if ((queue->emptyo) && (status -- Busy))

SIMXPUT~int,t otal vip)); return (queue->cardinal () +1);
else if (status - Busy)

return 1;
else

return 0;
f/f/fline.c

*include *line.h"
#include <stdio.h> void LineEntity: :UpdateStats 0)

Line object entity implementation # ifdef INSTRUMENTED
atats.cust online.update((aim-clock()

stats.last evenit time),
LineEntity: :LineEntity(sim_event &ev) - double(PendingNusnbero));

stats.last-event-time - sim-clocko;
char title[201; # endif

SIM trace(LEVE1l, "Line entity initializing~n");
Linelnit init info; void LineEntity: :CheckLineLength(sim-entityid
SIM GET(LineInit, mnit_info, ev); &requester)_
ID -; iit info.ID;
timeout ginerator - mnit_info.timeout generator; sim-trace (LEVELl. *handling check line event\n");

int length - PendingNumbero;
status - Free; sim schedule(requester, 0.0, LINELENGTHLV,
queue - new CustID head("queue"); SIM_)'U(int, length));
line length[ID) - U;I

* ifdef INSTRUMENTED void LineEntity: :WitingCustomer(CustID &customer)
sprintf(title,"Line %d",ID);
stats.cust online - sim-accumtitle); CustID-elem *elen;
stats.last event-time - 0;

* endif - _sim-trace(LEVELl, *handling waiting event\n");

Idata collection, e.g. ave. queue length
void LineEntity: :bodyo U ife INSTRUMENTED

UpdateStats U;
sim event ev; # endif
CustID customer;

Ifif the line is empty and the teller is free
s im wait (ev); if ((queue->empty() > 0) 6& (status -- Free))
whire (ev.type() !- REPORTLV) i I/send directly to teller

switch (ev.type U) (4 ifdef INSTRUMENTED
case CHECKLINELV: stats.cust-waiting_ time.update(0.0);

CheckLineLenigth (ev.scheduled by 0); # endif
break; Sim schedule(::teller id[IDi, 0.0, CUSTOMERLV,
Case CUSTOMERLV: SIMPUT (CustID, customer));

SIM GET(CustID. customer, cv); F
WaitingCustomer (customer); else
break;I
case TIMEOUTLV: customer.Arrived-onLine (timeout generator); /

S IM -GET(CustID, customer, ev); schedule restroom
CustomerTimeout (customer); If enqueue the customer on the line
break; elem - new CustID elemlcustomer);
case BUSY EV: elem->append (queue);

TellerBusy(-); line_length[IDJ ++;
break;
case FREE EV:

TellerFreei U;
break; void LineEntity: :CustomerTimeout (CustID &customer)

default: //Customer may have been on line too long, needs a
sim error("unexpected event type %d from: trip to the restroom

%s\n", ev.typeo,
ev.scheduled-byo).name U); CustID temp;

I ~CustID-ee *elem;
sim select (SIX ANY, ev);
if (cv -- SIM NO0 EVENT) Isim trace(LEVEL1, "handling timeout event\n");

aim traceLEVE1l, -Waiting for next customer or
vip\n*); f /must search for customer in queue

simn-wait 1ev); elem - queue-firstU;
while (elem !-0)

ifdef INSTRUMENTED tamp - elem->contentso;
WriteReport U;if (temp.id -- customer.id) I f/found customer

t endif in line
f/take off line

aim trace (LEVELl, "Line Terminated\n");
ifdef INSTRUMENTED

UpdateStats U;
mnt LineEntity::PendingNunber() # endif

elem->out 0;

67

//send to restroom
int j - (irit) customer.gender; sim tabulate::reset 0;
sim-schedule(::rest id(jI, 0.0, CUSTct4ERLV, Sum-- 0.0;

SIMPUT)CustIO, customer)); Sumsq - 0.0;
delete elan; Min - l.0e55; //very large
line length(IDI Max - -l.0e55; //very large negative
return;

else void my_ tally::update (double v)
elan - elem->nexto;

aim tabulate::update-obso;
aim error("Couldn't find timed out customer in Sum-+- V;

lin~n);Sumsq +- (-)
if Cv < Kin) Min -v
if Cv > Max)Max - v;

void LineEntity: :TellerBusyoC void my_ tally: :operator+- (my tally tally)

update cbs Ctally.obs 0);
aim traceCLEVELl, "handling busy event\n"); Sum +- tally.Sum;
status - Busy; Sumsq +- tally.Sumsq;

if Ctally.Max > Max) Max - tally.Max;
If Ctally.Min < Min) Min - tally.Min;

void LineEntity: :TellerFree))

CustID elem *elem; double mytally::avg() conat
Cust ID nextCustomer;I

double obs =double(aim-tabulate: :obsoC);
aim trace(LEVELl, "handling free event\n"); return Sum /obs;
status - Free;
if (!queue->emptyl)j

4 ifdef INSTRUJMENTED double my tally: :std-dev)) const
UpdateStats 0;

endif double obs - double(aim tabulate: :obso));
elan - queue-first0; return sqrt C) (Sumsq - (Sum * Sum) / obs) / Cobs-
elem->out.0; 1.0) M)
nextCustomer - elem->contentsfl;I

trpnextCustomer.LeavingLine)); IIcancel restroom dobemtal:in nsirtunM;I

line ,length[IDJ--;
* ifde? INSTRUMENTED double mytally::max)) const (return Max; I

stats.cust waiting_t ime.update) (aim-clock)) -
nextCustaimer.on queue)); void my tally: :reporto) conat
* endifI

a im-schedule(::teller -idID), 0.0, CUSTOMER_CV, aim_printf)
SIMPUT)CustID, nextCustomer)); "%12s %6d %9.3f %9.3f %9.3f %9.3f 19.3f

delete elem; *
title))
obs)),
Sum,
avg 0,

void LineEntity: :WriteReporto) std -dev)),
mi no,

a im schedule~summary_id, 0.0, REPORTREPLY, max)
SIMPUT (LineStats, stats));

void my tally::freport) conat aim-file-id &file) conat

I/IfImytally.c aim fprint f
#include "my_ tally.h" file,
#include <math.h> "%12s %6d %9.3f %9.3f %9.3f %9.3f %9.3f

mytally::my tally)):)"my tally") title)),
obs)),

Sum - 0.0; Sum,
Sumsq - 0.0; avg)),
Min - 1.0e55; IIvery large std -dev)),
Max - -1.0e55; //very large negative mm)),

max)

mytally::my -tally(const char *title) : (title,
"my-tally")

Sum - 0.0;
Sumsq - 0.0; I///frestroom.c
Min - 1.0e55; IIvery large #include "restroom.h"
Max - -1.0e55; /1very large negative #include <math.h>

Rest roomEnt ity: :RestroomEntity (aim event &ev)
void mytally::reaet))

68

sim-trace(LEVELl, "Restroom Constructor\n"); sim-schedule (aim-current)), restroom-duration,
UNOCCUPYEV,

Restrooslnit init info; SIMPUT(CustID, tag));
SIMNGLT(Restroomliiit, init_info, ev);_
gender - init_info.gender; else
service generator - sim trace(LEVELl, "there is a line or all toilets

init info~restrocei-service generator; are occupied\n");
tolerance-generator - -restroom-t,,,erance -(int) anint(

init-info.restros-tolerance_generator; tolerance genexator->sanple());
if (PindingNwsbero) > restroom-tolerance)I

for(int i-1; i<-: :numrests; I++) 9 ifdef INSTRUMENTED
occupy~i] - 0; stats.cust-walkaway++; // customer walk out of

cust-list - new CustID_headC"cust-list"); bank_
endif

ifdef INSTRUMENTED return;
stats.customers - 0;1
stats.cust walkaway - 0; else
if (gender -- Female) // enqueue it on the list

stats.line_length - sim-accum("Female"); eluim - new CustID elem(tag);
else elen->append (cust list);

stats.line_length - sim-accum("Male*); 0 ifdef INSTRUMENTED
stats.last_event_time - 0; UpdateStats 0;

endif I endif

void RestroomEntity::bodyo I

aim event ev; int RestroomEntity: :PendingNumbero(
CustID tag;

return (cust_list->cardinal());
aim wait (ev);
while (ev.type 0 !- REPORT_EV) I

switch(ev.typefl) I void Restroomtntity::HandleUnoccupy (aim_event &ev)
case CUSTOMER-EV:

HandleRestroom(ev); CustID elem *elem;
break; CustID7 tag, temp;
case UNOCCUPYEV: double restroom-duration;

HandleUnoccupyf(cv);
break; SIMGET(CustID, tag, ev);
default: tag.line - tag.BestLineo;

aim error("unexpected event type Wd from %s\n", aim schedule(::line id[tag.line], 0.0, CUSTOMEREV,
ev.typeC-), SIM PUT(CustID, tag));

ev.scheduled-byfl.najneo); imt i - tag.toilet;
occupy[i] - 0;

aim select (SIM ANY, ev); If (Icust list->emptyo)
if T(ev -- SIMNoEVENT) Ioccupy(lJ - 1;
aim -traceCEVELl, *Waiting for next customer or elem - cuat-list->firsto;

vip\n"); elem->out 0;
aim-wait(ev); temp - elem->contentso;

delete elem;
ifdef INSTRUMENTED

0 ifdef INSTRUMENTED UpdateStats 0;
WriteReportoC; # endif

endif restroom duration - service_generator->sample 0;
aim schealule (aim-current 0, restroom-duration,

aim-trace(LEVELl, "Restroom Terminated\n"); UNOCCUPY-EV,
SINPUT(CustID, temnp));

void RestrooinEntity::HandleRestrooin(sim-event &ev)

CustID tag; void Rest roomEnt it y: : UpdateSt at C()
double restroom duration;
int restroom-tolerance; int num onQ - PendingNumber));
CustID-elem *elem; stats, lne length.update(

(aim clock)) - stats.last-event-time),
double(num onob));

SINGET(CustID, tag, ev); stats.last-event-time - aim-clOo0;

ifdef INSTRUMENTED
stats .customers++; void RestroomnEntity: :WriteReporto(

endifI
imtceLV l,"Writing Restroom Report: Restroom

for (mnt i-1; I <- ::numrests; I++) %d \ni", gender);
If (occupy(i) -- 0) aim schedule(summaryid, 0.0, REPORTREPLY,
break; SIMPUT (RestroomStats, stats));

if ((cust liat->empty() > 0) 64 (1 <- ::numrests))
aim tra-:(LEVEL1, "restroom is available\n");
OCCUPY[il 1;
tag.toilet - ; f/I Isumlmary.c

restroom-duration =service_generator->sas'ple0; #include *summary.h"
#include "line.h*

69

#include "telier.h" I ifdef INSTRUMENTED
#include "restroom.h. aim wait for(report replyyp, ev);

SIM-hET (RestroomStats, restroom report, ev);
Suary: :Summary (aim eventfi) restroom-report .1 me length. freport (report file);

total customers +- restroom report.customers;
aim trace(LEVELl, "summary constructor\n"); total-customers walking away 4
total-report-O; restroom Treport. custwalkaway;

endil

void Sunmary: :bodyo #) ifdef INSTRUMENTED
aim fprintf (report file, -There were %5d trips to

aim event ev; the rest rooms\n",

aim-fromjp customer gqenerator(::cust_g_id); total customers);
simfromp vipgenerator(::vipg9id); sim fprintf (repjort file, "%5d customers walked away
aim__typep report-reply(ROTEL) without service\n-,

0 i fdef INSTRUMENTED _(EOTRPY;total-customers walking away);
mnt number; # endif
aim file id report file;

-LineStats line length stats; //Tellers
TellerStats teller totals; I/sum up the totals for the tellers
TellerStats teller-report; # ifdef INSTRUMENTED
RestroomStats restroom_report; teller -totals.customer_service-time - mytally("All

Customers");
//generate the report teller totals.VIP_service-time - my._tally ("All

report -file - aim-fopen("report","w"); VIi's");
*endif teller totals.cust interrupts - 0;

teller-totals.vip turnaway - 0;
//Generators aim fp~rint f(report -file,

f/wait for both generators to finish --------------------- -----

aim wait for(customer generator, ev);--------\n;
ifdef INSTRUMENTED aim fprintf (report_file, "Teller Service

SIMGET(int, number, Cv); Reports\n");
aim -fprintf (report_file, "%d customers arrived\n", Sim fprintf (report_file, ::sim tally heading)));

number); # endif
*endif for (i - 1; i <- ::numlines; i++)

aim wait for(vip generator, ev); aim schedule(::teller-id~ii, 0.0, REPORTEV);
*if dif INS§TRUMENTED # ifdef INSTRUMENTED

SINGET(int, number, Cv); aim wait for(reportr rplyjp, ev);
aim fprintf (report file, "%kd VIi'S arrived\n", SINGET(TellerStats, teller_report, ev);

number);
endif teller-report.customer-service-time.freport(report_fil

I/Lines teller totals.customer service time 4
I/print the statistics for the line lengths tellier report.customer-service-time;

ifdef INSTRUMENTED
my__tally customer-waiting time("Waiting Time"); teller report.VIP service time.freport(report_file);
aim-fprintf (report file, teller totals.VIP service time +-

---- --- ---- --- --- ---- --- ---- --- --- tiller report.VIP service time;
----- --- \n-); teller totals.cust_interrupts +=
aim fprintf (report_file, "Line Statistics\nLine teller repoirt.cust interrupts;

Lengt~is\n"); t eller totals. ip_turnaway *
aim fprintf (report_file, ::sim-accum-headingo); teller repoirt .vip_ turnaway;

endif # endif
for (int I - 1; 1 <- : :numlines; i++)II

aim schedule(::lineid[i], 0.0, REPORT_EV); # ifdef INSTRUMENTED
ifdif INSTRUMENTED

a im wait for(report replyyp, ev); teller-totals.customer-service-time.freport(report_fil
SINGET(LfineStats, ine length stats, ev); e);_

teller -totals.VIP -service time.freport (report file);
line length stats.cust online. freport (report-file); aim fprintf~report file,

cuatomei waiting time +- "Number of interrupts by VIi's: %d\n",
line length stats.cuat-waiting-time; teller totals.cuat interrupts);
* ndif aim fprintf (rep~ort file,

I *Number of vips turned away without being
*ifdef INSTRUMENTED serviced: %d\n",

a im fprintf (report file, : :sim tally headingo); teller-totals.vip_tirnaway);
custEomer -waiting time. freport (report file);_

*endif aim-fprintf (report file,

//Restrooms--------\n;
ifdef INSTRUMENTED f/aim fprintf (report file, "total_cuat - %ad \t

mnt total -customers - 0; total-vip - %~"
int total customers walking-away - 0; IItotal_cust, total vip);
aim-fprin~f (report ?file, //aim fprintf (report file,

-------------- "ave waiting on queue time -"f~"
----- --- \n-); II Etail queu~ed time/total_queued cust);
aim fprintf (report-file, "Restroom Statistics\nLine f/aim fprintf(report file, "number of customers on

Lengtfis\n"); lines: Vd\n",
aim fprintf (report file, ::sim-accum-heading))); //sum line length stata.cuat online);

endi'f f/aim_fprintf (report file, "namber of customers
for (i - 0; 1<-i; i++)

s~m achedule(::rest id[ij, 0.0, REPORTEV);

70

visiting restroom: %d\n", sim-wait Coy);

sum line length stats.cust timeout);
/7sim_Iprint f~report fi,

//'numbder of customers left without being void TellerEntity::ServiceCustomer(CustID cuscomer)
serviced: %d\n", I

f/sum-restroom_report.cust-walkaway); sian time cust service time,
endif service-time remaining;

4 sim-type-p VIP p(VIP LV);
aim -event ev;

sim trace (LEVELl, *handing customer service
////Iteller.c event'Cn");

#include *teller.h.
#include <stdio.h> sim schedule(::line idEID], 0.*0, BUSY LV); f/prevent

line 'from sending more

Teller object entity implementation # ifdef INSTRUMENTED
"I customer.ServiceStarted 0;

endif
TellerEntity: :TellerEntity (aim-event &ev)

cust-service-time - customer service generator-
sim trace(LEVELl, "entering teller entity >sampleo;

constructor\n"); service-time-remaining - cust_service-time;
Tellerlnit mnit info;
SIM_-GET(Tellerlniit, mnit info, ev); while (service-time-remaining > 0.0)
ID - mit info.ID;I
customer_service generator - service time remaining

mnit info.customer service_generator; sim-hold-for (service-.time-remaining, VIPp,

vip service generator - ev);
mnitTnfo.vipservice_generator; if (service-time-remaining > 0.0) I nterrupted

by VIP
0 ifdef INSTRUMENTED

char title(601; # ifdef INSTRUMENTED
sprintf(title, "Teller %d Customers",ID); stats.cust. -interrupts++;
ststs.customer service time = mytally(title); # endif
sprintf(title,-"Teller-td VIPs",ID); VipID VIP;
stats.VIP-service time - mytally(title); SIN GET(VipID, VIP, ev);

endif ServiceVip(VIP);

void TellerEntity: :badyo(
if def INSTRUMENTED

aim event ev; stats.customer-service-time.update(C(sim-clock C
Cust ID newCustomer; customer.service-start));
VipID VIP; # endif

GetNextEvent(ev);
while (ev.type()o REPORTLV) 4void Tellertntity::ServiceVip(VipID

swi tch (ev. type () I
case CUSTOMER-LV: aim time vip service time, remaining service-time;

SIMNGET(CustlD, newCustomer, ev); aim-type5p newVIPp(VIP LV);
servicecustomer(newCustomer); VipID new_VIP;

break; aim-event ev;
case VIP EV:

SIN GET(VfpID, VIP, ev); aim trace(LEVELl, "handling vip customer service
ServiceVip (VIP); event' n");
break;
default: aim-schedule(::line Iid[IDI, 0.0, BUSYEV);

aim error("unexpected event type %d from: %s\n", f/prevent line from sending new cust
ev.typej-i,

ev.scheduled-by().nanle 4); vip service-time - vip_service generator->sampleo;

GetNextEvent (ev); remaining service -time - vip_.service time;
while (remaining service time > 0.0)

ifdef INSTRUMENTED
WriteReportoC; remaining -service time -

endif aim-hold-for(remiaining_service-time, newVIPyp,
sim-traceCLEVELl, "Teller Terininated\n"); ev); i eann~evc-ie>00

interrupted by another VIP-
void TellerEntity: :GetNextEvent)sim_event 4ev)

_ SIMGET(VipID, newVIP, ev);
a im -schedule(::line-id[ID, 0.0, FREE_LV); /1tell TurnkwayVip(newVIP);

line we are ready

f/wait for something
aim select (SIN ANY, ev); # ifdef INSTRUMENTED
if (ev -- SINFloEVENT) stats.VIP_service-time.update(vip _service-time);

endif
aim trace(LEVELl, "Waiting for next customer or

VIP\n");-

71

void TellerEntity: :Turnhwayvip (VipID)

0 i fdef INSTRUMENTED
stats. vipturnaway++;

f endif

void TellerEntity: :WriteReport 0I

aim trace(LEVELl, "Writing Teller Report: Teller %d
\n", 1b) ;

aim schedule(awmmary id, 0.0,
REPORT_REPLY, SIM PUT (TellerStats, stats))

72

APPENDIX D

SMALLTALK-80 CODE

SimulationObject subclass: #Test asim schedule: [Counter new countWithOneDelay: nun]
instanceVaribleNames: at: 1 .
classVariableNames: '' asim startUp.
poolDictionaries: - [asim proceed - nil] whileFalse
category: 'Simulations'! p I

ITeat methodsFor: *list of tests'! !Test methodsFor: 'list of tests'!
newtest4: num test3WithOutDelay: num

lasim dummy block] lasiml
block _ (dummy < num ifTrue: ^Time millisecondsToRun:

[I myToken I [asim Simulation new.
dummy - dummy + 1. asim sEhedule: [Counter new countWithOutDelay: num]
aeim schedule: block at: 1. at: 1 .
myToken _ self acquire: 1 ofResource: asim startUp.

'token'. [asim proceed - nil] whileFalse
self holdFor: 1.0; release: myTokenJj. !

^Time millisecondsToRun:
[dummy 0 . !Test methodsFor: *list of tests'!
asim Simulation new. test4: num
asim produce: 1 of: 'token'.
asim schedule: block at: 1 . lasim
asim startUp. ^Time millisecondsToRun:
[asim proceed - nil] whileFalse [asim Simulation new .
! I asim produce: 1 of: I token'

num timesRepeat:
!Test methodsFor: 'list of tests'! [asim schedule: [Itoken
testl: num token _ self acquire: 1 ofResource: * token'

lasim dummyl self release: token I
^Time millisecondsToRun: at: 1]
[dummy _ 0 . asim startUp.
asim Simulation new . [asim proceed - nil] whileFalse .]! I
num tImesRepeat:

[asim schedule: [dummy _ dummy + 1] !Test methodsFor: 'list of tests'!
at: (Uniform from: 1 to: 1000) next] . test5: num

asim startup.
[aiim proceed - nil] whileFalse .]! I lasim inthandl

^Time millisecondsToRun:
!Test methodsFor: 'list of tests'! [asim Simulation new .
test2: num inthan3 InterruptHandler new.

asim schedule: [num timesRepeat: [inthand handleWith:
lasim dummy block] H.
block [dummy < num ifTrue: self holdFor: 100

(dummy dummy + 1. withHandler: Inthand.1j
asim scheaule: block at: 1]. at: 1 .

^Time millisecondsToRun: asim schedule: (num timesRepeat: (self holdFor: 1
[dummy 0 . inthand interrupt]]
asim Simulation new. at: 1 .
asim schedule: block at: 1 . asim startUp.
asim startUp. [asim proceed - nil] whileFalse .! I
[asim proceed - nil) whileFalse
]!I

!Test methodsFor: 'list of tests'!
test3WithDelay: num

SimulationObject subclass: #CustomerObject
lasim instanceVariableNames: 'myGender bailOut
^Time millisecondsToRun: classVariableNaes:
[asim Simulation new. poolDictionaries: 1'
asim schedule: [Counter new countWithDelay: nun] at: 1 category: 'SimBenchmark'!

aim startUp. !CustomerObject methodsFor: 'accessing'!
[asim proceed - nil] whileFalse getGender
)! 1 -

!Test methodsFor: 'list of tests'! "myGender! I
test3WithOneDelay: num

!Customerobject methodsFor: 'simulation control'!
lasiml getBestLine
^Time millisecondsToRun: "return first available line, or otherwise line
(asim _ Simulation new. with shortest queue-

73

Ibeat I
best -1 Customerobject subclass: #VIPObject
1 to: NUMLlNES do: [:index I instanceVariableNames:

(self inquireFor: 1 ofResource: (index classVariableNames:
printString)) poolDictionaries: 1

ifTrue: [^index). category: ISimBenchmark'!
((Self numvaiting: index) < (self nunmaiting:

best)) !VlPObject methodsFor: 'simulation control'!

). ifTrue: [best _ index] tasks Ii bettss
^best!!

Ibanksim myline mystring myvipstring mytokenlCustomerobject TnethodsFor: 'simulation control'! myviptokenl
goToThePotty mytoken _nil.

"simulate going to the potty" banksim _Simulation active.
myline -(RAND next * NUMLINES) truncated + 1

I tolerance resname token wait gmystring -myline printString.
tolerance -(Gamma mean: 2.0 var: 0.5) myvipstrinig - vip' , mystring.

ImprovedNet. (self inquireFor. 1 ofResource: myvipstring)
resnam pot', (myGender printStrinq). ifTrue: [myviptoken _self acquire: 1
(((Simulation active) provideResourceFor: ofResource: myvipstring]

resname) returnPendingNu) ifFalse: [^nil].
> tolerance) (self inquireForz. I ofResource: mystring)
ifTrue: [bailOut _ true] ifTrue: [mytoken _ self acquire: 1
ifFalse: ofResource: mystring)

[token _ self acquire: 1 ofResource: ifFalse: [(banksim vipHandler: myline)
resname. interrupt].

(myGender - 0) self holdFor: (Exponential mean: 7.0) next
ifTrue: [wait _(Gamma mean: 5.0 self release: myviptoken.

var: 1.0)next)] fas:(at (am en . (mytoken - nil) ifE'alse: [self release: mytokeni!

var: 1.0)next].
self holdFor: wait Simulation subclass: #BankSimulation
self release: token]!! instanceVariableNames: IviplntliandlersI

classVariableNames:
!Customerobject methodsFor: *simulation control*! poolflictionaries: 1
numWaiting: index category: 'SimBenchmark-!

"return number waiting on resource Index"
!BankSimulation methodsFor: 'initialization'!

I resource IdefineArrivalSchedule
resource _ (Simulation active) "SBank simulation subclass provides the simulation

prov ideftesourceFor: (index printStrinq) . objects"
^resource return~endingNum!!

self scheduleArrival~f: CustomerObject
!Customerobject methodsFor: 'simulation control,! accordingTo: (Exponential mean:

taksCustomer subobject tasks- .0" scheduleArrival~f: VIPObject
accordingTo: (Exponential mean:

Ibanksim myline mystring myvipstring mytoken 2.0)!
servicetime starttime

partialtime pottyinthand vipinthand I !BankSimulation methodsFor: 'initialization'!
banksim _Simulation active. defineftesources
pottyinthand InterruptHandler new "Bank simulation resource initialization"

handle~it-h: [self goToThePotty].
mytoken _nil. I indexstring I
(mytoken " nil] whileTrue: 1 to: NUNLINES do:

(bailOut ifTrue: ("nil]. [:Index i
banksim schedule: [pottyinthand interrupt) indexstring -index printString.

after: ((Gammna mean: 3.0 var: 1.0] improvedNext ~.self produce:. 1 of: indexstring.
myline self getBeStLine. self produce: 1 of: (*vip' , indexstring)].
mystrin4 myline printstring. self produce: 4 of: 'pot' ,0 printString;
myvipstriiig 'vip' mystring. produce: 4 of: *pot' 1 printString.!
mytoken self acquire: I ofResource:

mystring with~andler: pottyinthand]. !BankSimulation methodsFor: *initialization'!
vipinthand (banksim vipHandler: myline) initialize

-adlI1th "additional initializations for Sank Simulation"
[partialtime (banksim time) - starttime.
servicetime servicetime - partialtime. super initialize.
self release7 (self acquire: 1 ofResource: Transcript show: I Bank Sim Runn.ng

myvipstring) I.
servicetime (Exponential mean: 10.0) next .Smalltalk at: #RAND put: (Random new).
starttime _ anksim time. Smalltalk at: #NU)4LINES put: 3.
(servicetime > 0.0) ifTrue: [self holdFor: viplntHandlers _Array new: NU)ULINES.

servicetime withHandler: vipinthand]. 1 to: NUMLINES do:
self release: mytoken.! [:index I viplntHandlers at: index put:

[InterruptHandler new)].!
!Customerobject methodsFor: 'initialization'!
initialize !BankSimulation methodsFor: 'accessing'!

"initialize instance variables" vipHandler: num
"return vip int handler for line num"

myGender _ ((RAND next) + 0.5) truncated.
bailOut _false!

74

^vipIntHandlers atz nm!

Object subclass: #RunBankSim
instancoVariableNams:
clasaVariabloNames.
poolDictionaries: 1
category: -Simflenchmark-

RunBankSim class
instariceyariableNanus:1!

!Run~ankSim class niethodsFor: all'!
tie: value

"comment stating purpose of message*

Ibankaim I
barhksim _SankSimulation now startUp.
(bankaim -time < value] whileTrue: (banksim

proceed]!

75

APPENDIX E

MOOSE CODE

I//l/ITest 1: print-event-stats 0;

#include "/va/jil/event/event.h"
#inc Jude <stdlib.h> I/IIIITest 3a:
,Inc Jude <ACG.h>
#include <Uniform.h> #include "/va/jil/event/event.h"
#include <stream.h> #include <stdlib.h>

ACG gen; class foo j
public:

Uniform r(O.0, 1000.0, Aqen); void bar (int);

class tooI
public: too *f;

void barO);
C;class foobarEvent :public EventI

public:
too *f; foobarEvent(int N) : nCN) H)

private:
class toobarEvent : public Event mnt n;

public: void startO C) f->bar(n);
toobarEvent (too *f) : F~f) HCC

private:
too *F; void foo::bar(int n)C
virtual void starto I) CE-)bar C; Cif (--n > 0)

t->bar (n);

void too::baro) C
main~int argc, char *argvlC) C

mnt n - atoi~argv[l));
main (mt argc, char *argv[]CC I t new too;

int n - atoi~argv(ll); it simulation Cn);
f - new too; EVENT~toobarEvent, Cn), 1.0);
init simulation Cn); run simulationC0;
while (n--C prinit-event_statso);

EVENT (foobarEvent, Cf), rC));C
run simulationC);
prijit event-statsCC
HALT C); I//IIITest 3b:

include "/va/j il/event/event .h"
#include <stdlib.h>

I/I/IITest 2:
class tooC

#include "/va/jil/event/event.h" public:
#include sztdlib.h> void bar Cint);

class too C
public: too *f;

void bar Cint);
C; class foobarEvent : public EventC

public:
too tf; toobarEvent~int N) : nCN) CC

private:
class foobarEvent : public Event C int n;

public: void start C) C t->bar (n);
foobarEvent~int N) : n(N)CC;

private:
mnt n; void foo::bar~int n) C
void starto C) C -bar~n); Cevent delay~l.0);

C; it C-=n > 0)
t->bar(n);

void too::bar~int n)C
it C--n > 0)
EVENT~toobarEvent, Cn), 0.0); main~int argc, char *arqvo])

C mnt n - atoi~argv(1));
f - new too;

main~int argc, char *arqv[]C C mit simulation~n);
mnt n - atoi~argvflJC;, EVENT~toobarEvent, Cn), 1.0);
f - new too; run simulationC0;
init simulation~nC ; pr i~it -event statSC);
EVENT~ftoobarEvent, Cn), 0.0); I/I//Test T:
run simulationo);

77

#include I/va/jll/event/event.h" public:
#include "/va/jil/event/resource.h" fooTripperEvent(foo *f, int n) F~t), N4(n) t)
*include <stdlib.h> private:

too *F;
class CustomerObj J int N;

public: void start 0(1f F->Trpper(N);*
void Runhint);

mainlint. argc, char sargv(])

CuatomerObi -Cust;in.n-aoarvl;
Resource *Res, f - new foo;

init simulationoI;
class RunEvent : public Event (EVENTitooTripperEvent, (f,n), 0.0);

public: EVENT(fooTrippeeEvent, (f,n), 0.0);
RunEvent (mt n) : N4(n) (I run_simulation 0;
void starto() Cust->Run(N); Iprint event-statso;
int N,

void CustomerObj::Run(Int n) I I/I//,Sim (the bank simulation):
If (n > 1)
EVENT(Run~vent, (n - 1), 0.0); #include "/va/jil/event/event.h"

Res->give (1); #include "/va/jil/event/interrupt.h"
event delay (1.0); #include "/va/jil/event/resource.h"
Res-)tEake-back (1): #include <MLCG.h>

#include <Eriang.h>
#include <NegativeExpntl .h>

main(Int argc, char *argv(I) I #include <DiscreteUniform.h>
int I - atoi(argv(1); #include <limits.h>
mnit simulationo; #include <stream.h>
Cust -new CustomerObi;
Res -new Resource; MLCG randomgen;
Res->create(l);
EVENT(RunEvent, (1), 0.0); DiscreteUniform rand ~gende- (0, 1, &randomgen);
run simulationo;
prii t-event-statso; Erlang rand nature(1.0, 1.0, &randomgen);

// change pirams later to meanNatureCallsTime and
varianceNatureCall sTime

//////Test 5: Erlang rand line(l.0, 1.0, srandomgen);
// change params later to mearLineTolerance and

#include */va/jil/event/event.h" varianceLineTolerance
#include w/vaIlilleventlinterrupt.h"
#include <stdlib.h>. Erlang rand frest (5.0, 8.0, &randoimgen);

class too IErlang rand mrest(3.0, 6.0, &andomfgen);
public:

void Tripperlint); DiscreteUniform rand numlineslO, 1, &randomgen);
void Trippee(Int); IIchange max to num~ines - I

Erlang rand serve(l.0, 1.0, &randomfgen);
too *f; // change mean later to meanServiceTime,

varianceServiceTime;
EID Trippee_old;

NegativeF-xpntl rand-custarrive (1.0, &randomgen);
DECLAREINTERRUPT(Trip Interrupt); // change mean later to nieanlnterArriveTime

void foo: :Trippee(int n) I NegativeExpntl rand viparrive(l.0, &randomgen);
for lint i - 0; 1 < n; i++) I Ichange mean later to meanVPlnterArriveTime

TRAP event delay(100.0(;
HANDLE (Trip Interrupt);
END-TRAP; enum Gender (Female, Male);

class LineObi : public Resource
public:

void foo::Tripper(int n)I{ class CustomerObj *serving;
for lint 1 - 0; 1 < n; 1+-si EID service eid;
event delayll .0); void ServeCi~st (class CustomerObi *cust);
event interrupt(Trippee_eid, TripInterrupt); 1;

typedef LineObi *LineObJP;

class fooTrippeeEvent : public Event Iclass ServeCustEvent : public Event
public: public:

fooTrippeeEventltoui "f, Int n) F~t), N(n) (IServeCustEvent (LineObi l1, CustomerObj *c)
private: LMl, Cdc) H

too *F; void start((I L->ServeCust (C); I
mnt N; private:
void start I I F->TrlppeeIN); I LineObi *L;

I; CustomprObi *C;

class fooTrippertvent : public Event

78

typedef Resource RestRoom; Sim Time totalTimeUntilServed - 0.0;
Sim-Time totalCustServiceTime - 0.0;

class CustamerObj
public: void CustomerObj::GetOnLineo I

Gender myGender; LineObj -myLine;
Custostercbj 0; SimTime timerillNatureCalls;
virtual void GetOnLineo); // FumCusts++;
void VisitFacilitiesoC; EID timeout;
virtual mnt isVIPC) j return 0; 1 Sim-Time time - simulation-time 0;

private:
LineObi -FindBestLineC); for(;;)

C; for C;;)
timerillNatureCalls - rand nature 0;

class GetOnLineEvent : public Event ImyLine =FindBestLineo);

public: timeout -EVENT (NatureCallsEvent, C
GetOnLineEvent CCustomerObJ *c) :C Cc) 1) t imeTillNatureCalls);
void start C)(C->GetonLineo; CTRAP C

private: myLine->give (1);
Customerobj *C; break;

C; C HANDLE CNature Calls interrupt)
VisitFacilitieiso);

class VIPObi : public CustomerObi ENDTRAP;
public:C

void GetOnLine)); totalTimeUntilServed +- simulation-timeC)
int. isVIPO(j return 1; C time;

event terminate~timeout);
// tuie - simulation timeoC;

class CustGenerator : public Event C myLine->ServeCust~thls);
protected: // totalCustServiceTime +- simulation-time C)-

NegativeExpntl -interArrive; time;
virtual void newCustC) (Customerobj *co -new myLine->take-back(l);

CustomerObi; Cbreak;
public:C

CustGeneratorCC : interArrive(&rand-custarriveC delete this;

void start 0;
C; void CustomerObi: :VisitFacilitieso C)

RestRoom *restRoom;
class VIP~enerator : public CustGenerator j mnt restRoomLineTolerance;

protected: // numNatureCalls++;
virtual void newCustC C VIPObi *vo - new VIPObj; restRoom - restRoomnstmyGender);

restRoomLineTolerance - int~rand-lineC) + 0.5);
public- if (restRoom->numpendlngC) >

VIPGeneratoro() interArrive - &randviparrive; C restRoomLineTolerance) C
C; delete this;

// numCustLeaving++;
CustomerObi: :Customer~bj C) Cevent terminateoC;

MyGender - rand gender)); C else I
EVENT CGetOnine~vent, th~s) * 0.0); restRoom->give~l);

event delay(CmyGender -- Female)? rand-frestC):
rand mrestCC);

DECLAREINTERRUPT CNature_CallsInterrupt); rest Roomn->t ake_bac k Cl);

class NatureCallsEvent : public Event CI
public:

NatureCallsEvent)) C eid - Current EIDC); C LineObi *CustamerObj::FindBestLineCC
void start)) C event-interrupt~eid., LineObj *line, *bestLine;

NatureCallsInterrupt); C mt length, bestLength;
Drivate:

LID eid; bestLength - INT MAX;
C; for (int i - 0; 1 < numLines; i++) C

line - allLines~iC;
double hoursToRun; length - line->numpendingC);
double meanlnterArriveTime; if Cline->availableC) - 0) length++;
double meanVPlnterArriveTime; if (length < bestLength) C
double meanNatureCallsTime; bestLength - length;
double varianceNatureCallsTime; bestLine - line;
double meanLirteTolerance;C
double varianceLineToierance;
double meanServiceTime; r,.lrn bestLine;
double varianceServiceTime;
Int numLines;
LineOtj *alliines; DECLAREINTERRUPTCVIP Arrives Interrupt);
RestRoom -restRooes[21; DECLAREINTERRUPT CVIPLeavesTfnterrupt);
long seed;

void VIPObj::Get~nLineC) C
'it numCusts - 0; LineObj *line;
itt numVips - 0; CustomerObi *oldCust;
nt numCustLeaving - 0; // numVips++;
int numMadVips = 0; int nline - int~rand nislinesC));
Int numNatureCalls -0; line - allLin'.s[nlineC;
mnt numViplnterrunts -0; oldCust - line->serving;

79

EID oldservice - line->service-eid; cout << "What is the variance of the service
if (oldCust) (time? "
if (oldCust->isVIPo) Icn >> varianceServiceTime;

// numMadVips++: rand-serve.variance)varianceServiceTime);
return; cout << "What is the mean time in minutes till

'Nature Calls'? "
IfnumViplnterrupts++; cn >> meanNatureCallslime;

event interrupt (oldservice, rand-nature.mean (meanNatureCallsTime);
VIP-Arrives_-Interrupt); cout << "What is the variance? "

else cmn >> varianceNatureCallsTime;
line->give (1); rand nature.variance(varianceNatureCallslime);

line->Ser-veCust (this); cout «< "What is the mean restroom line length
if (oldCust) tolerance? "
event interrupt (oldservice, cn >> meanLineTolerance;

VIP Leaves I-nterrupt); rand line.mean (meanLineTolerance);
else cout «< -What is the variance? 1;
line->take back (1); cn >> varianceLinelolerance;

delete this, rand line.variance(varianceLineTolerance);
cout « "-How many lines are there? "
cm >> numLines;

void LineObj::ServeCust(CustomerObj "cust) I rand_numlines.high(numtines-l);
Sim-Time svclime, startTime; cout << "How many hours should the simulation

run? -
svcTime -rand-serve)); cin >> hoursToRun;
for(;;) Icout << "Random Seed?

service eid = Current EIDO; cn >> seed;
startTiine = simulation -time));
serving - cust; cout << 11\nZ'ean Interarrive Time: " <
if (svcTime <= 0.0) meanInterArriveTime <- \"

break; cout << "Mean VIP Interarrive Time: " <
TRAP (mean'JIPlnterArriveTime

event delay(svcTime); <<.\"
serving - 0; cout << "Mean Service Time: " << meanServiceTime
break; << \"

HANDLE(VIP_-Arrives Interrupt) j cout << "Variance Service Time: " <
svc'rime -- simuTation_time)) startTime; varianceServiceTime << "\n";
TRAP event suspend)); cout << "Mean 'Nature Calls' Time: " <
HANDLEW(IP -Leaves-Interrupt); meanNatureCallsTime << "\n";
END TRAP; cout << "Variance 'Nature Calls' Time: " <

IENDTRAP; varianceNatureCalisTime <<"\"
coot << "Mean line length tolerance: -"<

meariLineTolerance << "\n";
cout << "Variance line length tolerance: "<

void CustGenerator::start()I variancetineTolerance << "\n";
CustomerObj -customer; cout << "Number of lines: " << numLines << "\n";
Sim-Time waitTime; coot << "Hours to run: " << hoursToRun << -\n-;

for (;;) jailLines - new LineObjPtnumtinesj;
waitTime - (*intei-Arrjve) 0; for (mnt k - 0; k < numLines; k++)
event delay (waitTime); Line~bj *line -new LineDbi;
newCust oI iine->create (1);

allLines~k] = line;

class EndSirr : public Event randomgen.reseedseed. seed);
public:

void start i init _simulation(4000, 2000);
print _e'.ent _statsO)
HALT)); EVENT (EndSIm, , hoursToRun 160.0);

EVENT)CustGenerator, (), 0.0);
EVENT(VPGenerator-, 0,. 0.0);

main)) j ru' simulation();
restRooms ema.e - new RestRoom;
restRooms[Malel - new Restkocqr; coot << numCusts << customers arrived.\n';
restRoomsrEemale!->crea~e(4); cout. << numVips << VIPs arrived.\n";
restRoomrs)Male -crea~e)41; cout << numMadVlps " VIPs left angrily.\n";
Cout "C "Z L. S.1a*. c- '::nes a'-.o iHes Room'- cout << "There were "<< numNatureCalls <<

startlng--\r": visits to the
cout << "What ~s tne i cjszor'ez nrerarri.va. restroorms.\n';

time in minutes? "; cout << numViplnterrupts << I customsers were
cmn >> meanInterArr.ve~ime; interrupted by V:Ps.\r-;
rand custarrive.mean(-ean'rterArr~ve7ime); cout c< numclustLeaving << " customers left
cout << "W,at e -ean VIP interprrivai time without being served.\n";

in minutes' "; cout << "Tne average customer service time was
cin >> meanV:P'A1erArr ,ve-.4* e; <<
rand viparr~ve. eameanV:?nterArr~veTime); totaiCastervlce71me / numCusts -
cout << "Wnat ~s te -ea- service time In numCustT-eaving) << In";

minutes? "; cout << "The average cus'omer wait time was " <<
c >> meaerce7_c; total 7Jmentl . Servel ,'-MVCusts

ran srv.~en~earvwT~);numCustLeavingi \-

80

for (k - 0; kc < numLines; k++)

cout << "\nThe statistics for the length ofline #" << k+l <<
are:\n*;

alLines (I] ->report stats 0;

cout << \nThe statistics for the length of the
mans room line
are:\n";

restRooms[Malej->report-stats 0;

cout << "\nThe statistics for the length of the
ladies room line
are:\n";

restRoans(Fermale I->report-stats ;

print event-stats 0;

81

APPENDIX F

ERIC CODE

testl (ask clock set your simtime to 0)

(ask Nothing make instance foo)
(define-class Nothing (:parents Something)) (ask clock to schedule !foo to (bar !n) at 0)
(ask Nothing when receiving (bar) nil) (ask clock run to completion))

(defun testl (n) ;;;test3b
(declare (type fixnum n))
(ask Nothing make instance foo) (define-class Nothing (:parents Something))
(dotimes (i n)

(declare (type fixnum i)) (pcl:defmethod barl ((self Nothing) n)
(ask clock to schedule !foo to (bar) (declare (type fixnum n))

at !(random 1000))) (when (plusp (decf n))
(ask clock run to completion)) (ask clock to schedule !self to

(complete-bar !n) in I second)))
(defvar *Nothings*)

(ask Nothing when receiving (bar >n)
(defun testla-internal (n) (barl self n))

(declare (type fixnum n))
(do'_:.es (i n) (ask Nothing when receiving (complete-bar >n)

(declare (type fixnum i)) (barl self n))
(let ((x (svref *nothings* i)))

(ask clock to schedule !x to (bar) at (defun test3b (n)
!(random 1000)))) (declare (type fixnum n))

(ask clock run to completion)) (ask clock set your simtime to 0)
(ask Nothing make instance foo)

(defun zestla (n) (ask clock to schedule !foo to (bar !n) at 0)
(let ((*nothings* (make-array n))) (ask clock run to completion))

(dotimes (i n)
(setf (aref *nothings* i) (ask Nothing ;;;test4

make instance foo)))
(time (testla-internal n)))) (define-class Nothing (:parents Something))

;;;test2 (ask Nothing when receiving (run >n)
(when (> n 1)

(define-class Nothing (:parents Something)) (ask clock to schedule !self to (run !(l- n))
(ask Nothing when receiving (bar >m) in 0 seconds))

(if (> m 1) (ask clock to schedule !self to (bar (ask res give 1 and ask !self run2 !n))
!(decf m)) at 0)))

(ask Nothing when receiving (run2 >n)
(defun nextbaz (n) (ask clock to schedule !self to (run3 !n) in 10

(declare (type fixnum n)) seconds))
(if (> n 1)

(let ((n-i (1- n))) (ask Nothing when receiving (run3 >n)
(declare (type fix-.mi n-1)) (ask res take-back 1))
(ask clock to schedule !foo to (baz !n-1) at

0)))) (defun test4 (n)
(declare (type fixnum n))

(ask Nothing when receiving (baz >n) (ask resource make instance res)
(nextbaz n)) (ask res create 1)

(ask Nothing make instance cust)
(defun test2 (n) (ask clock to schedule !cust to (run !n) in 0

(declare (type fixnum n)) seconds)
(ask clock set your simtime to 0) (ask clock run to completion))

(ask Nothing make instance foo)
(ask clock to schedule !foo to (bar !n) at 0)

(ask clock run to completion))

;;;test3a

(define-class Nothing (:parents Something))

(pcl:defmethod barl ((self Nothing) n)
(when (plusp (decf n))

(barl self n)))

(ask Nothing when receiving (bar >n)
(decf n)
(barl self n))

(defun teat3a (n)
(declare (type fixnum n))

83

DISTRIBUTION LIST

INTERNAL T. F. Saunders

A010 D071

R. D. Haggarty J. M. Apicco
B.M. Horowitz D. E. Currie

R. G. Howe
A030 K. L. Lennon

J. A. Maurer
R. W. Jacobus M. L. Morgillo
H. W. Sorenson R. Platcow
L. M. Thomas R. B. Quanrud

J. S. Whalley
D010 E. C. Wigfield

C. Y. Young
E. J. Ferrari
D. D. Neuman D072

D040 D. Amano
R. A. Birtwell

D. I. Buckley J. C. Broderick
G. J. Koehr M. J. Brooks
J. C. Naylor, Jr. J. R. Cherniack

J. R. Cottrell, Jr.
D050 P. A. Dallas

D. A. Drake
R. A. McCown R. I. Eachus
E. A. Palo S.C. Ernst
E. N. Skoog D. A. Franciskovich

J. A. Francoeur
D060 R. F. Furey-Deffely

V. T. Giddings (10)
J. K. DeRosa W. M. Hornish
C. H. Nordstrom, Jr. J. A. Houchens

P. C. Krupp
D070 J. S. Lambe

R. J. Lesch
E. H. Bensley (10) M. R. Lord
A. L. Buchanan D. S. Lyons
J. A. Clapp R. W. Noel
M. P. Galin W. F. Paton
J. H. James P. J. Pelsinski
C. E. Kalish B. C. Robinson
D. A. MacQueen, Jr. M.E. Rothberg
M. A. Makhlouf A. Sateriale

85

P. D. Smith C. H. Gager
P. R. Smith S. M. Newman
M. F. Spears
S. J. Stella D090
K. E. Styles
L. A. Sun L. S. Metzger
S. W. Tavan S. J. Pomponi
T. M. Wheeler
A. M. Wilihite F044

D073 M. A. Fabrizi
I. Frolow

C. E. Baker
B. J. Bakis F084
B. Cui
M. T. Drozd P. T. R. Wang
J. Finkel
S. R. Friedman GO010
J. R. Knobel
M. T. Owens V. A. DeMarines
T. J. Reale, Jr.
T. B. Rice G030
T. C. Royer

N. E. Bolen
D074 R. F. Nesbit

T. K. Backman G110
P. A. Brown
W. C. Carter H. A. Bayard
L. P. Costa R. C. Labonte'
S. 1. Frank E. L. Lafferty
G. M. Friedman S. D. Litvintchouk
J. Gates M. E. Nadel
J. A. Gunter M. J. Prelle
M. Hazie P. S. Tasker
L. J. Holtzblatt
A. L. Kosmala Gill
C. Loizides
R. A. Martin J. D. Jacobs
R. J. McGue J. 1. Leivent
F. R. Murphy M. T. Maybury
R. S. Popp A. M. Wolirath
C. K. Reid
R. D. Rhode G 115

D080 B. M. Thuraisingham

R. W. Bush

86

G117

T. J. Brando
H. G. Goldman
P. J. Guay
D. M. Johnson
L. G. Monk
J. T. Trostle
R. J. Watro (20)
A. M, Wolirath

J070

J. G. Sprung

J080

H. Carpenter
D. H. Gill
R. P. Granato
F. X. Maginnis
A. Sears
J. K. Summers

J082

H. Cohen

W153

M. L. Kahn

W156

W. P. Niedringhaus

87

